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GRAPH AND TEMPORAL NEURAL MODELS FOR PROACTIVE IDENTIFICATION

OF FRAUDULENT ACCOUNTS IN THE ETHEREUM BLOCKCHAIN

Abstract. Topicality. Fraudulent activities on the Ethereum blockchain pose a substantial risk to decentralized finance and
require capable models not only to respond to already detected abuses but also to identify suspicious accounts proactively before
losses escalate. The subject of study is the application of graph and temporal neural models to the task of classifying Ethereum
accounts as benign or fraudulent, considering the structural relationships between addresses and the temporal dynamics of
transactions. The purpose of this article is to develop and experimentally evaluate a neural architecture based on a multilayer
perceptron as a baseline component for the subsequent integration of graph and temporal mechanisms, and to analyze its
performance on the open Ethereum Fraud Detection dataset, which features a high-class imbalance. The following results
were obtained. A baseline deep model for binary account classification was constructed using feature preprocessing, stratified
data splitting, class weight balancing, L2 regularization, Dropout, and early stopping, which enabled the achievement of an ROC
AUC value of approximately 0.98 under conditions of a pronounced dominance of the safe class. A detailed analysis of the
confusion matrix and the precision, recall, and F1 metrics demonstrated an acceptable trade-off between reducing false positives
and minimizing the proportion of missed fraudulent accounts, which is critical for real-world financial scenarios. Conclusion.
The results indicate that a properly designed baseline neural model on tabular features can ensure high-quality proactive
identification of fraudulent Ethereum accounts and serve as a starting point for further integration of graph and temporal
architectures aimed at improving interpretability and robustness to the evolution of malicious behavior patterns.
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transactions.

Introduction

Problem relevance. Fraud in blockchain has long
ceased to be an isolated incident at the periphery of the
market. It has evolved into a systemic threat to
centralized exchanges, DeFi platforms, and mass retail
investors. Aggregate losses are consistently measured in
tens of billions of dollars, forming a distinct class of
financial threats [1; 12]. As the capitalization of
cryptoassets grows, not only the scale but also the
organization of schemes changes: they combine technical
exploits of smart contracts, phishing campaigns, long-
prepared rug pull projects, and the use of gaps in
regulatory frameworks across jurisdictions
[1; 115 12].

In this context, the blockchain is increasingly
viewed as a critical component of financial infrastructure.
Its reliability depends not only on the correct
implementation of cryptographic mechanisms but also on
the ability to detect suspicious transactions promptly,
with minimal delays, approaching real-time [1; 9; 12].
This issue is particularly significant for the Ethereum
ecosystem, where the base protocol guarantees the
authenticity of signatures and the consistency of state but
does not address the legitimacy of the motives behind
monetary flows [5; 12]. The detection of toxic addresses,
the construction of wallet risk profiles, and the
identification of fraudulent chains are delegated to
external analytics services and exchange solutions, which
in practice often react only after funds have passed
through cross-chain bridges, mixing services, and
cascades of centralized platforms [5; 9; 12].

The combination of address pseudonymity and
transaction transparency creates a complex situation.

Formally, industrial-scale transaction graphs are
accessible to everyone, but this does not guarantee the
detection of complex fraudulent patterns [1; 12]. The
public ledger stimulates the development of graph and
temporal analysis methods, yet adversaries use the same
data. Adaptation of schemes to common heuristics takes
the form of splitting flows into small amounts, multi-step
address carousels, and multi-stage cross-chain paths that
blur topological and temporal signals [5; 12]. This gives
rise to a continuous adaptation process between model
developers and actors seeking ways to bypass heuristics.
The most successful models maintain an advantage for a
limited period, after which fraudsters change their
evasion logic to minimize visible traces.
[2;6;7;12].

Classical anomaly detection methods based on
threshold rules or simple statistical filters were designed
for scenarios with centralized identification and stable
behavioral profiles. In blockchain, analysts operate only
with addresses, volumes, and timestamps, and are forced
to compensate for the lack of context through aggressive
feature engineering [1; 8; 12]. Performance improves
only up to a point: multilayered fraud strategies adjust
local behaviors to appear normal, and anomalies manifest
only at the global level of the money flow pattern, which
naturally leads to the formalization of graph and temporal
models [2; 3; 7; 12].

A separate challenge is the extreme class imbalance
typical of financial monitoring on open transaction
graphs. The share of confirmed malicious nodes
represents a small fraction of the dataset, and the simple
proportion of correctly classified addresses is not an
informative metric. A model that always optimistically
classifies addresses as legitimate achieves more than 99
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percent formally correct decisions but fails to detect rare
events that are critical for security. Therefore, the metrics
must be sensitive to the minority class: recall, F1, PR
AUC, and the share of incidents at a constrained FP level
[1; 2; 3; 8]. As a result, the task shifts from a binary
decision to allocating analytical resources to the most
suspicious segments of the graph, which aligns with the
requirements of modern financial monitoring [1; 9].

At the same time, there is a growing demand for
models that jointly capture graph topology and temporal
dynamics while respecting constraints on computational
resources and latency that are acceptable for practical
deployment in the Ethereum network [2; 3; 7; 10]. Graph
neural networks with temporal attention mechanisms,
temporal GNN architectures, and attention-based
models, such as TempoKGAT, demonstrate the ability to
detect complex spatiotemporal patterns of fund flow
more accurately under severe class imbalance [3; 7; 10].
At the same time, their practical value for Ethereum still
requires further validation on realistic data streams,
considering memory constraints, latency, and integration
with exchange and regulatory services, which makes this
research direction one of the key priorities
[1;2;5;9;12].

Literature review. In the contemporary literature
on blockchain ecosystem security, a persistent gap is
emphasized between formally correct cryptographic
implementation and actual protection against fraud. For
Ethereum, this issue is particularly pronounced: core
mechanisms guarantee the authenticity of transaction
signatures but do not address the motives or admissibility
of an operation. In the absence of a strong regulatory
framework, a significant share of protective functions
shifts to external analytics tools and informal practices
[1; 7; 12]. Additionally, smart contracts, which have
increased the platform’s attractiveness for developers,
have simultaneously opened new avenues for exploits,
logic errors, and opaque financial flows [1; 7; 12].
Classical approaches to fraud detection have historically
focused on features tightly linked to an identifiable user
and have relied on models such as logistic regression,
decision trees, or ensembles of these models. In
blockchain systems, such signals are either missing,
fragmented, or weakly trusted. The lack of centralized
identification limits analytics to abstract addresses and
transactions, where auxiliary features are derived from
the graph's structure or its history of cash flows [1; 12].

A particular focus is placed on studies that
reconstruct latent address behavior using only public
blockchain data through feature engineering [5; 11; 12].
Such methods include aggregates like mean or median
balance, transaction counts, volume distributions,
interaction frequencies with counterparties, and
centrality metrics in the graph. They yield a substantial
performance gain over naive models but quickly
approach a ceiling in complex schemes where anomalies
are visible only through the coordination of multiple
addresses [1; 5; 11; 12].

Research in detection is increasingly oriented
toward exploiting the structure of relationships among
addresses. Graph neural networks alter the modeling
perspective: a node is no longer treated as an isolated

point, but as part of a complex network where
information circulates among neighbors [2; 7; 6].
Convolution-based architectures propagate information
through several topological layers, and neighbor
sampling enables scaling to large graphs where complete
aggregation is infeasible [2; 7]. Graph attention
mechanisms provide additional flexibility, allowing the
model to assign distinct weights to specific types of
connections, which is crucial in graphs with numerous
low-informative edges [2; 6; 10; 12].

Most current graph implementations rely on the
assumption of structural stationarity, where the graph is
fixed at a given moment, and internal connections are
treated uniformly, regardless of transaction time. For
Ethereum networks, such a simplified view risks
distorting the genuine dynamics of cryptoassets.
Moreover, many models assume that the graph or its
substantial part fits into main memory, which is
problematic for systems with millions of addresses and
edges [2; 7; 9]. In parallel, temporal models are emerging
that treat sequences of events as the primary object
[3; 7; 8]. Recurrent architectures and their variants have
long been the standard for time series tasks, allowing the
accumulation of information about past states and their
use when interpreting new signals [3; 8]. In blockchain
analytics, this enables the observation of the evolution of
transaction rates, volumes, or counterparties, while
attention mechanisms allow the model to focus on critical
episodes rather than the averaged profile [1; 7; 8].

Temporal approaches, however, poorly capture the
position of an address within the broader network
configuration; the operation sequence of an isolated
node, even with heavy activity, may mask its role in a
complex network attack [3; 2; 7]. This creates a
methodological gap: graph models provide a better
description of topology but oversimplify the temporal
dimension, whereas sequential models focus on
behavioral dynamics while largely ignoring structure
[1; 3; 7]. In response to these limitations, a line of hybrid
architectures is emerging that combines structural and
temporal components [2; 3; 7; 10]. One strategy is to
analyze graph snapshots at different time points
sequentially, process them using graph networks, and
feed the resulting representations into a recurrent or
attention-based block to model dynamics [3; 7; 10].
Another approach integrates temporal information
directly into the graph structure by annotating nodes and
edges with timestamps and adapting state update rules to
the temporal nature of the data [7; 10]. In parallel, work
is underway on distributed training and graph temporal
methods that distribute computation across nodes to
improve scalability under challenging conditions
[2; 6;8;9].

An important practical issue of hybrid solutions is
the large number of parameters and resource demands,
complex hyperparameter tuning, and an elevated risk of
overfitting on small or extremely imbalanced datasets
[1; 2; 3; 5]. Experience from real systems shows that
ensembles of simpler models, where each component
detects a specific aspect (static features, local
connectivity, or temporal dynamics), often provide more
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controllable and stable behavior than highly complex
universal architectures [1; 3; 5; 8].

The overall review suggests that, despite the
breadth of modern tools, a notable shortage of studies
remains that explicitly focus on balancing model
complexity with stable performance in production
systems [1; 2; 5; 9]. Issues of scalability, resource
consumption, interpretability of results, and decision
latency are often secondary to improving offline metrics
on test sets, which opens a research space for building
hybrid architectures with a transparent and manageable
structure that combines the relevant properties of graph
and temporal models while controlling the number of
parameters [1; 2; 7; 6; 10].

In this context, the purpose of the research is to
propose and experimentally validate a hybrid neural
architecture that combines expressive graph-based
aggregation with a careful treatment of the temporal
structure of transactions in the Ethereum network, while
maintaining a manageable number of parameters and
ensuring suitability for deployment under real-world
blockchain workloads.

1. Methodology

The study is based on the Kaggle Ethereum Fraud
Detection dataset, which comprises 9,842 Ethereum
addresses labeled as fraudulent [4]. Each record
represents an address as a vector of 45 features, including
transaction volumes, the number of interactions with
unique counterparties, temporal statistics, and derived
structural network characteristics, which is consistent
with contemporary approaches to anomaly detection in
blockchain graphs [5; 11; 12]. The feature matrix has the
form X € R¥*4 where N = 9842 is the number of
addresses and d = 45 is the feature space dimension —
the label vector y € {0,1}", where y; = 1 denotes a
fraudulent address. The dataset exhibits a strong class
imbalance, with approximately 82 percent of records
being legitimate and 18 percent fraudulent, which aligns
with trends in financial fraud detection systems, where
genuine events dominate [1; 2; 3]. Denoting the number
of legitimate examples by N,, and the number of
fraudulent examples by N;, one obtains

~ 0.18 (1)

~ 0.82 )

which implies that most addresses do not exhibit
suspicious activity, while significant financial losses are
generated by a small subset of fraudsters [1; 2; 12].
Preprocessing comprised several stages. First, all
features were standardized using the StandardScaler. For
each feature j, the mean y; and standard deviation o;were
computed, and the transformation
x!. = X T H 3

ij
O'.
j

was applied to achieve zero mean and unit variance along
each coordinate, as recommended for deep models in
financial data applications [1; 2; 3]. Such normalization
is critical for deep networks when individual features
have different scales, since this complicates optimizer
convergence [1; 2]. The dataset was then split into three
subsets: 70% for training, 15% for validation, and 15%
for testing. This is formalized as three disjoint index sets
Itrains Ivais Irest, With stratification, so that the proportion
of the positive class in each subset approximately
matches the global ratio N; /N [1; 2; 3; 8]. The next step
was class balancing through weights. For class
frequencies fy = Ny/Ni f; = N; /N B the weights were
computed as

_1 4
Wy _fo (4)

1 (5)
T

and, after normalization, for this sample w, = 1.0,
w; = 5.5. The importance of weighting the rare class has
been confirmed in studies on imbalanced data problems
[2;6;9; 11].

The model architecture was chosen as a dense neural
network (Dense NN). Unlike LSTM or GRU
architectures, which require complete sequences, the data
here are represented as aggregated features constructed
from the interaction graph [1; 2; 5; 12]. This makes it
possible to map the input address vector in the feature
space via

fo:R? -, [0][1] (6)

where fy(x;) is the estimated probability that an address
belongs to the fraudulent class. An explicit graph model
would require an adjacency matrix 4 € {0,1}¥*N_ which
for large N mposes memory and parameter count
constraints and leads to typical overfitting risks [2; 3; 7].
Structural information is already incorporated through
features such as the number of neighbors, counterparty
types, balances, and centrality measures, which ¥; is the
result of a preliminary mapping of the transaction graph
into the feature space [2; 5; 12]. Regularization in the
model is based on a combination of L2 penalty A || 8 ||3
and dropout for hidden layers, which significantly
constrains parameter growth and minimizes the risk of
overfitting, especially for small, imbalanced samples
[1; 2; 3]. Dropout enables the network to distribute
information and temporarily suppress  weight
coadaptation, while the L2 penalty maintains a flat
weight distribution, a standard practice in financial fraud
and cybersecurity tasks [1; 2; 3].

Training is performed using Adam, an optimizer that
adapts the step size for each parameter based on the first
and second moments of the gradient. An initial learning
rate of 7y = 1 X 10™* provides stable convergence for
most standard architectures [1; 2]. To solve the task of
classifying fraudulent addresses, the loss function is set
to binary cross-entropy, which is the classical choice for
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two-class problems with significant imbalance [1; 2; 3].
The loss for a single example is given by

t;=—log pi + (1 —yplog(1—p)) (7)

and the total loss with class weights is

N
£(6) = %meﬂ ¢, ®)

Confident misclassifications receive higher penalties,
which is crucial in settings where missed fraudulent
addresses carry an  exceptionally  high  cost
[1;2;3;8].

The mini-batch size varied from 128 to 1024.
Initially, smaller batches introduced noise and helped
escape local minima, while increasing the batch size in
later epochs improved training efficiency [1; 2; 3]. An
early stopping mechanism was used, terminating training
when the validation loss failed to improve for more than
15 epochs, combined with a learning rate reduction when
the loss plateaued [1; 2, 3]. Accuracy is not very
informative for such a dataset,

TP+TN
TP+TN +FP+FN

)

Accuracy =

because it does not account for missed fraudulent cases,
the evaluation focuses on precision, recall, F1 score, area
under the ROC curve, and the behavior along the
precision-recall curve, following recommendations for
fraud detection models [1; 2; 3; 8]. These metrics are
defined as

Precisi i 10

recision = TP+ FP (10)

Recall = i 11

T TP LN an
Precision - Recall

Fl1=2 (12)

Precision + Recall

Here, the ROC AUC reflects ranking quality across
all thresholds, while the precision-recall curve is more
indicative for class-imbalanced datasets and serves as the
basis for selecting the operating threshold [1; 2; 3].

2. Model Architecture

In financial fraud detection tasks, there is a natural
temptation to employ highly complex models, such as
GRU stacks with attention mechanisms, graph
convolutional layers, and residual connections, primarily
since recent work on financial fraud and blockchain
anomalies reports accuracy values close to 99 percent on
massive datasets [1; 2; 6]. On small datasets, the situation
changes, because the same architectures, without strong
regularization, tend to memorize training examples and
implement mappings f(x;) = y; essentially only for
elements of the training set, with minimal generalization
to new addresses, which is a typical issue for deep models
in financial fraud problems [1; 2; 3].

In the present setting, the dataset size is limited, so the
architectural complexity is tightly controlled. If the

number of model parameters is denoted by P(6), tthen
each additional dense layer with n;, inputs and n,,;
outputs contributes
Paense = Nin * Nout T Nout (13)
that is, new degrees of freedom, and when P(8) > N the
model is almost inevitably driven toward overfitting, as
documented in deep learning surveys for fraud detection
[1; 2]. Considering this, a sequential fully connected
architecture with two hidden layers is deliberately chosen
instead of convolutional or recurrent structures, which
are more justified for strictly sequential or explicitly
graph-based input representations [1; 2; 3; 7]. Model
interpretability is just as important as numerical metrics.
When the model flags a particular address as fraudulent,
practical deployment requires at least an approximate
answer to the question why this address was chosen,
which aligns with explainability requirements in
financial systems and regulatory approaches to fraud
[1; 2; 6]. Deep, multi-branch models with graph layers
and complex attention mechanisms, such as SEFraud or
ASA GNN, are significantly harder to explain to
stakeholders and regulators. In contrast, a two-layer
dense network remains sufficiently transparent to support
post-hoc interpretation methods, such as SHAP or
gradient-based attribution, which have already been
described in the context of financial fraud analysis [1; 6].
The architecture graph is linear. The input layer
receives 45 normalized features, formally a vector
x € R*>, which corresponds to aggregated transactional,
network, and temporal characteristics, as in typical
datasets for fraud and blockchain anomalies
[4; 5; 12]. The first hidden layer is dense with 128
neurons, and its number of parameters is

P, = (45-128) + 128 = 5888,

while the ReL.U activation ReLU(z) = max (0, z) allows
established practice in tabular and graph-oriented
financial fraud tasks [1; 2; 3]. Batch normalization is then
applied, which for an activation vector h € R!28
transforms each component as

~ hi —u; ~
hj = ——=—=,y; = v;h; + ;

2
/O‘j + €

where u; and ajz are mini-batch estimates of mean and

(14)

variance, and y;,f; act as learnable scale and shift
parameters, stabilizing the activation distribution and
permitting more aggressive learning rate settings, as
recommended in deep learning studies on fraud detection
[2; 3]. Dropout with probability p = 0.5 is applied after
normalization. For each component y;, a random mask
m; ~ Bernoulli(1 — p) is sampled, and during training

(15)
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is used, meaning that roughly half of the neurons are
randomly zeroed, while the remaining ones are rescaled
to preserve the expected activation level. This approach
distributes information across many neurons and reduces
the risk of overfitting, as advised for small and
imbalanced financial datasets [1; 2; 3].

The second hidden layer is also dense, but with 64
neurons, thus reducing the representation dimension; its
parameter count is

P, = (128 - 64) + 64 = 8256,

and ReLU is again used as the activation function. This
is followed by another batch normalization layer and
Dropout with the same probability p = 0.5, forming a
regularization ~ symmetric  block that matches
conservative training practices in fraud detection
[1; 2; 3]. The output layer contains a single neuron with
sigmoid activation

1
1+e2

y=0(2)= (16)

where z=w'h+b, a h € R® is the output of the
second hidden layer, and the number of parameters in the
output layer is

P;=64-1+1=65.
The total number of model parameters is computed as

Protas = P1 + P, + P3 + Ppy (17)
where Pgy accounts for the parameters of both batch
normalization layers (scales and shifts). In this
configuration, the total number of parameters is 14977,
which can be regarded as a manageable level for a
training set of one to two thousand examples, typical of
public fraud and blockchain anomaly datasets [1; 2; 4].
The choice of a relatively aggressive Dropout value
p = 0.5 requires additional justification. In image or text
tasks, typical values range from 0.2 to 0.3. However, after
the 70/15/15 split, only about 1,500 training examples
remain, with roughly 270 belonging to the positive class,

creating an extreme imbalance [1; 2; 3]. Under these
Ptotal

conditions, the ratio is fairly large, and the model

train

tends to memorize primarily positive examples; Dropout
p = 0.5 combined with an L2 penalty with a coefficient
A = 0.01 adds the term

Lreg©®) = 1) 03 (18)
k

to the loss function, constraining weight growth and
steering the model toward solutions with smaller norms
I 61, in line with recommended anti-overfitting
strategies in fraud detection [1; 2; 3]. Batch
normalization additionally serves a regularizing role,
since y; and ajz are estimated at the mini-batch level, and

each training step injects slight noise into the activation

distribution. Combined with early stopping, which halts
training when L,,,; it does not improve for 15 epochs, and
with learning rate reduction on validation loss plateaus,
this yields a conservative training regime [1; 2; 3]. The
combination of Dropout, L2 regularization, batch
normalization, early stopping, and adaptive learning rate
reduction represents a deliberate compromise in which
the model does not reach maximal training accuracy.
Instead, it achieves more stable and higher F1, ROC
AUC, and PR AUC values on validation and test sets, as
recommended in surveys on fraud and blockchain
anomaly detection [1; 3; 2; 8].

The initial 45 features can be naturally divided into
three groups that capture different aspects of address
behavior. Transactional features describe the number of
incoming and outgoing operations and the average and
extreme transfer amounts; network features encode the
structure of the local neighborhood in the interaction
graph, including the number of unique counterparties,
aggregated partner balances, and simple -centrality
indicators; temporal features capture the distribution of
transactions over time and the irregularity of activity,
consistent with feature construction practices for
Ethereum and Bitcoin fraud [4; 5; 12]. Formally, all of
them are represented by a vector x € R*>, but each
subgroup lies in its own subspace
R%x @ Rénet @ R4time, reflecting different information
types and allowing the model to indirectly account for
local topology and temporal patterns encoded in the
feature space [4; 6; 7; 12].

3. Results Of Training and Analysis

The training metrics of the model exhibit behavior
typical of deep learning algorithms applied to financial
transaction datasets with a strong class imbalance. The
loss and accuracy curves follow a characteristic pattern
for tasks in which most examples belong to the safe class,
while fraudulent examples may have structurally
distinctive features. The rapid improvement phase is
short, but the effect of regularization is pronounced.
Aggressive Dropout and L2 settings restrain overfitting
and preserve stability even on a limited sample, although
this does not guarantee the same level of data realism in
a production environment.

The dynamics of learning metrics are shown in
Fig. 1. The three plots reveal a consistent trend. The loss
decreases to operating values around 0.35, validation
accuracy stabilizes at approximately 0.95, and the AUC
increases monotonically to 0.9788, which falls within the
range interpreted as  excellent discriminative
performance. In practice, such behavior is typical for
configurations where the number of parameters exceeds
the data volume and regularization methods (such as
Dropout, L2, and batch normalization) are applied
stringently. The validation loss behavior after the 60th
epoch, along with occasional fluctuations in accuracy,
does not indicate critical overfitting; however, early
stopping could help save computational resources.

These metrics are not universal and always depend on
the quality of the dataset. In this case, the dataset is
already cleaned and prefiltered, which compensates for
some limitations of the simpler architecture. The area
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under the ROC curve (AUC) is more critical here than
raw accuracy, because the final decision is made with a

Training loss

Training accuracy

variable classification threshold, and system behavior is
adjusted to the user’s specific risk tolerance.

Training auc

—— ftrain_loss
val_loss

accuracy

—— train_auc
val_auc

— train_accuracy
val_accuracy

80 100 o 20 40

Epoch

60 80 100 0 20 40 60 80

Epoch

100

Fig. 1. Dynamics of model training performance metrics

The confusion matrix reveals a clear structure of
classification outcomes on the test set, presented in
Fig. 2. The model correctly classified 1507 legitimate
addresses as safe (TN) and 361 as fraudulent (TP), while
26 legitimate addresses were flagged as suspicious (FP)
and 75 fraudulent addresses were missed (FN). False
positive errors maintain a more acceptable risk profile;
their cost is limited to temporary user inconvenience and
an additional marker for KYC or manual checks, and
many industrial fraud prevention systems treat a low
single-digit FP rate as operationally acceptable. False
negatives, by contrast, pose systemic risk because they
correspond to direct financial losses or undetected
attacks. Out of 436 fraudulent addresses, 75 remained
undetected, resulting in a false negative rate of
approximately 17.2 percent. This level is high for a
standalone system but acceptable as a first layer in a
multistage control cascade where external heuristics and
regulatory instruments provide subsequent blocking.

Precision Recall curve, located in the upper part of the
value range, confirms model robustness under threshold
variation; for recall above 0.8, precision remains higher
than 0.9, which allows adjustment of the operating
threshold without substantial quality degradation and
keeps FP within bounds that are acceptable for primary
screening tasks.
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Fig. 2. Confusion matrix of classification outcomes

Qualitative assessment of the model is expressed
through ROC and Precision Recall curves, shown in Fig.
3. The ROC curve preserves an almost ideal steepness in
the region of low false positive rates, maintaining the
actual positive rate above 0.90 at FPR below 0.03. At the
same time, an AUC of 0.9788 indicates high-quality risk
ranking and nearly optimal class separation under this
metric.

Precision-Recall Curve

1.0

0.819

0.6 4

Precision

0.4 4

0.2 4

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Recall

Fig. 3. Curves for evaluating classification quality

The detailed classification report highlights nuances
in the region of class imbalance. For legitimate addresses,
precision, recall, and F1 remain consistently high,

whereas for fraudulent addresses, recall is lower, at
0.828, which is a direct consequence of the architectural
compromise. Aggressive regularization with a Dropout
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Rate of 0.5 effectively constrains overfitting but prevents
achieving the optimal recall for the minority class.
Reducing Dropout to 0.3 increases training accuracy, yet
validation AUC decreases, and the number of FNs grows,
once again confirming the lack of parameter portability
between test and production samples. The model operates
as part of a cascade and can guarantee practical
robustness against fraud only when combined with
additional heuristics and external monitoring.

Discussion of results

The obtained AUC value of 0.9788 on a sample of
approximately 2000 Ethereum addresses indicates a high
discriminative capacity of the dense neural model under
consideration; however, it more accurately delineates an
upper bound for this specific task and dataset rather than
establishing a universal deployment standard. For Kaggle
like financial datasets with carefully selected and
aggregated features, it confirms the model’s ability to
exploit patterns already embedded in the feature space.
However, the question of detecting novel, weakly labeled
anomalies remains open. Outside a controlled
environment, where fraud structures evolve and are not
promptly reflected in the training data, such an
architecture may lose part of its effectiveness precisely
because of the limitations of the underlying feature space.
In studies employing full graph neural networks that
operate with explicit adjacency matrices, multi-layer
message passing, and contrastive learning, AUC scores
in the 0.92-0.95 range are typical on unfiltered on-chain
data. These values are formally lower than those obtained
in this work, but they are achieved under stronger noise,
fragmented labeling, and less aggressive preprocessing.
Therefore, a direct numerical comparison is not
appropriate without a unified feature engineering
scheme. Furthermore, graph-based models differ
substantially in computational complexity. While the
dense model considered here, with roughly 15000
parameters, has linear complexity O(N) and processes
examples independently, typical GCN or GAT variants
scale as O(N + E) or worse, depending on the edge
density, and require recursive neighbor queries and
subgraph storage in memory. For systems operating in
near real time, where each millisecond of latency is
critical, this creates a considerable barrier to deployment.

For a small, heavily preprocessed sample, the
experiments demonstrate that a compact, dense model
can be as effective as more complex architectures,
provided that structural and temporal information have
already been distilled into informative, aggregated
features. However, these observations cannot be directly
applied to real-world on-chain streams in production
environments, where millions of addresses, dynamic
graph structures, new node types, and evolving
interaction patterns are present. Under such conditions,
the advantage of graph-based approaches, which can
model deep topology and inter-address dependencies,
may become more pronounced.

The specificity of the obtained results lies not only in
the AUC level but also in the nearly symmetric precision
for both classes, 0.95 for legitimate and 0.93 for
fraudulent addresses, at a class ratio of about 3.5 to 1.

This case is representative of problems dominated by
everyday examples, where the precision of the minority
class typically degrades if the imbalance is not
considered or the class weights are poorly chosen. In the
presented configuration, optimal tuning of class weights
and regularizers partially compensates for the small
sample size, maintaining sensitivity to fraudulent
patterns without sharply increasing the number of false
positives. The confusion matrix confirms that the model
retains an acceptable FP profile for primary screening
while keeping the proportion of missed fraudulent
addresses at a level compatible with a cascaded defense
scenario in which subsequent analysis layers further
narrow the risk perimeter.

An indirect graph representation, that is, a feature set
derived from the transaction graph without an explicit
adjacency matrix, enables a robust solution for a small
dataset without losing the basic transactional context.
Structural characteristics, such as neighbor counts,
counterparty profiles, aggregated balances, and simple
centrality measures, together with temporal statistics,
including activity distributions over time and burst
patterns, transform the original graph into a tabular space
in which the proposed neural architecture operates
effectively. From a resource perspective, this is often a
more balanced approach than forcing GNN or sequence
models on a few thousand addresses or short transaction
chains, especially when memory budgets and allowable
latency are constrained. Another advantage is
transparency: analyzing input feature weights and model
behavior at the level of feature groups simplifies
interpretability for stakeholders and regulators compared
with profound message passing networks.

The temporal dimension considerably limits the use
of AUC as a universality indicator. A model trained on
historical blockchain activity snapshots inevitably
encounters distribution drift when processing new
transaction streams. This concerns both the emergence of
new fraud patterns and the gradual change in the behavior
of legitimate users and infrastructure nodes. In financial
anti-fraud systems, an AUC drop of 8-10 percentage
points over several months, without retraining, is already
considered a warning signal, regardless of the initial
performance level. From this perspective, the current
dense network configuration serves as an optimal first-
level filter for a relatively narrow time window and a
specific subgraph; however, it cannot be considered
stable in the absence of update mechanisms.

The simplicity of the architecture and modest
memory requirements, in contrast to the need to keep
large graphs in RAM for GNNs, create favorable
conditions for a strategy of regular retraining on fresh
data. Periodic fine-tuning on updated samples allows the
model to adapt to distribution drift without drastically
increasing structural complexity or inference costs. At
the same time, such a tabular architecture cannot serve as
a standalone solution for systemic defense against
evolving attacks. A rational strategy is to employ it as one
layer in a multi-level system where heuristic rules,
signatures of known schemes, aggregated graph features,
and online adaptation mechanisms adjust weights on
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current data and sustain the overall robustness of the
system.

Conclusions

The regularized dense neural model with carefully
balanced classes demonstrates performance comparable
to more complex architectures for the task of detecting
fraudulent Ethereum addresses, provided that rich, semi-
manually aggregated features are available. The high
AUC, together with balanced precision and recall for
both classes, indicates that the model can capture
complex, nonlinear combinations of transactional,
network, and temporal characteristics without additional
graph-based or sequence blocks. The strength of the
approach lies not only in the numerical metrics but also
in the absence of clear signs of overfitting on a small and
imbalanced dataset. A flexible class weighting scheme,
combined with Dropout and L2 regularization, provides
a productive balance between model complexity and
generalization ability, reducing the risk of over-
sensitivity to individual addresses or local structures.

At the same time, the main limitations of the tabular
architecture are linked to insufficient exploitation of the
explicit transaction graph topology and detailed temporal
dynamics. These aspects are crucial for identifying
multihop laundering schemes, cascading attacks,
composite cross-chain paths, and scenarios where
anomalies manifest only at the level of global fund flow
patterns. Moving to a hybrid model that augments
aggregated features with compact graph embeddings and
sequential or contextual vectors from Transformer
architectures can shift the balance between complexity
and quality toward better capture of spatio-temporal
dependencies. This approach enables the combination of

the interpretability and resource efficiency of the tabular
model with the expressiveness of graph and temporal
mechanisms.

Further development of the solution is best aligned
with adaptive training regimes. Introducing federated or
at least regular online fine-tuning would transform the
static dense model into a component that gradually adapts
to new fraud patterns, distribution drift, and protocol
changes. In this configuration, the tabular architecture
serves as a lightweight and interpretable first-level filter.
At the same time, more complex graphs and temporal
blocks handle a subset of high-risk addresses, providing
deeper contextual analysis.

The current results should be viewed as a reference
for model behavior on a particular historical snapshot and
Ethereum subgraph rather than as a universal guarantee
of future performance. High AUC values and balanced
precision indicate that the model is ready for integration
into multi-level analytics for a blockchain service, but
this is feasible only under continuous monitoring of
distribution drift, periodic validation on updated samples,
and scheduled parameter updates. In practice, robustness
and security are ensured not by a single classifier with
record AUC, but by a flexible ecosystem of filters in
which each component, from simple heuristics and
signatures to graph and temporal models, can both
individually and jointly respond to environmental
changes and evolving risk patterns. Within such an
ecosystem, the dense neural model considered here
serves as a complexity-controlled and interpretable base
module on top of which hybrid architectures for proactive
identification of fraudulent accounts in the Ethereum
blockchain can be constructed.
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TPA®OBI TA YACOBI HEMPOHHI MOJIEJII JJIsI IPOAKTUBHOI IIEHTU®IKALIL INAXPAMCHKHUX
OBJIIKOBHUX 3AIIMCIB Y BJIOKYENHHI ETHEREUM

B. B. IIpocomnog, O. C. Kymuepsos, B. €. Coxkomn, P. B. Tpodumenko

AHoTaunisi. AxrtyaabHictb. [llaxpaiicbki akTuBHOCTI y OnokdueiiHi Ethereum CcTaHOBNATH CyTTEBHH PHU3UK IS
JICTICHTPATI30BaHUX (DiHAHCIB 1 MOTPEOYIOTH MOJENEH, 3MAaTHUX HE JIMIIE pearyBaTH Ha BXKE BHUSBIICHI 3J0BXHBaHHSI, a
MPOAKTUBHO 1MCHTU(IKYBATH MiI03piii OOMIKOBI 3amucu 10 eckanaiii 30uTkiB. [IpeamMeToM MOCTiAKeHHSI € 3aCTOCYBaHHS
rpadoBHUX i YacOBMX HEWPOHHHX Mojened 1o 3axadi kinacudikanii akayHtiB Ethereum Ha noOpouecHi Ta maxpaicbki 3
ypaxyBaHHSIM CTPYKTYPHHX 3B’S3KiB MK aapecaMd W JWHAMIKM TpaH3akilid y daci. MeTo cTaTTi € po3poOJeHHS Ta
eKCIepIMEHTaIbHA OI[iHKa HEHPOHHOI apXiTEeKTypH Ha OCHOBI 0araTomapoBOro MEpCEeNnTpoHa SK 0a30BOT0 KOMIIOHEHTA JUIS
nmoJanbInoi iHTerpamii rpadoBHUX i YaCOBMX MEXaHI3MiB, a TAKOXK aHai3 i1 epeKTUBHOCTI Ha BimkpuToMy naraceri Ethereum Fraud
Detection 3 BucokuM kiacoBuM aucOanancoM. Byan orpumani HacTynHi pe3yastaTu. [ToOynoBano 6a30By INTHOMHHY MOZETH
i OiHapHOi Kiacuikarii oONIKOBHX 3alKCiB i3 BHKOPHUCTAHHAM IIOTIEPEIHBOI OOPOOKH O3HAK, CTPAaTH(IKOBAHOTO MOMLTY
BUOIpKH, OayaHCYBaHHS Bar Kiacis, peryisipusanii L2, Dropout i paHHBOT 3ynHHKH, 10 Aano 3Mory gocsarti 3HadeHHss ROC AUC
6iu3pko 0.98 32 yMOB 3HAUHOI mepeBaru “OesmevHoro” kiacy. JleTaapHuil aHalli3 MaTpHIli HETOUYHOCTEH Ta METPHK precision,
recall, F1 moka3aB NpUUHATHUI KOMIIPOMIiC MiXK 3MEHIICHHSIM XHOHOMO3UTHBHUX CHPAIfOBAHb 1 MIiHIMI3alli€l0 YacTKH
MIPOMYIIEHHX IMIaXpaiiChKUX aKayHTiB, III0 € KPUTHYHUM JUTS PeajbHUX (iHAHCOBUX clieHapiiB. BucHOBOK. PesynbraTtu cBinyats,
10 KOPEKTHO CHPOEKTOBaHA 0a30Ba HEHPOHHA MOJETh Ha TAOMMYHUX O3HAKAX 3/1aTHA 3a0e3MEeUNTH BHCOKY SKICTh MPOAKTHBHOI
ineHTHdiKamii mraxpaiicbkux oOmikoBuX 3ammciB B Ethereum Ta ciyryBatu BiANpaBHOIO TOYKOKO JUIS TMOAAJBIIOI iHTErpamii
rpadOoBUX 1 YACOBHX AapXiTEKTyp, OPIEHTOBAaHWX Ha IOKpAIICHHS IHTEPIPETOBAHOCTI M CTIHKOCTI [0 eBomowii mabJIoHIB
3JI0BMHCHOI MOBEJ[IHKH.

KarouoBi cmoBa: Onokueitn Ethereum; maxpaiictBo; rpadoBi HelipoHHI Mepesxi; yacoBi Mozeni; i1eHTHiKallis PU3HKIB;
MalliHHE HaBYaHHS; TPaH3aKIii.
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