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GRAPH AND TEMPORAL NEURAL MODELS FOR PROACTIVE IDENTIFICATION 

OF FRAUDULENT ACCOUNTS IN THE ETHEREUM BLOCKCHAIN 

Abstract .  Topicality. Fraudulent activities on the Ethereum blockchain pose a substantial risk to decentralized finance and 

require capable models not only to respond to already detected abuses but also to identify suspicious accounts proactively before 

losses escalate. The subject of study is the application of graph and temporal neural models to the task of classifying Ethereum 

accounts as benign or fraudulent, considering the structural relationships between addresses and the temporal dynamics of 

transactions. The purpose of this article is to develop and experimentally evaluate a neural architecture based on a multilayer 

perceptron as a baseline component for the subsequent integration of graph and temporal mechanisms, and to analyze its 

performance on the open Ethereum Fraud Detection dataset, which features a high-class imbalance. The following results 

were obtained. A baseline deep model for binary account classification was constructed using feature preprocessing, stratified 

data splitting, class weight balancing, L2 regularization, Dropout, and early stopping, which enabled the achievement of an ROC 

AUC value of approximately 0.98 under conditions of a pronounced dominance of the safe class. A detailed analysis of the 

confusion matrix and the precision, recall, and F1 metrics demonstrated an acceptable trade-off between reducing false positives 

and minimizing the proportion of missed fraudulent accounts, which is critical for real-world financial scenarios. Conclusion. 

The results indicate that a properly designed baseline neural model on tabular features can ensure high-quality proactive 

identification of fraudulent Ethereum accounts and serve as a starting point for further integration of graph and temporal 

architectures aimed at improving interpretability and robustness to the evolution of malicious behavior patterns. 

Key words:  Ethereum blockchain; fraud; graph neural networks; temporal models; risk identification; machine learning; 

transactions. 

Introduction 

Problem relevance. Fraud in blockchain has long 

ceased to be an isolated incident at the periphery of the 

market. It has evolved into a systemic threat to 

centralized exchanges, DeFi platforms, and mass retail 

investors. Aggregate losses are consistently measured in 

tens of billions of dollars, forming a distinct class of 

financial threats [1; 12]. As the capitalization of 

cryptoassets grows, not only the scale but also the 

organization of schemes changes: they combine technical 

exploits of smart contracts, phishing campaigns, long-

prepared rug pull projects, and the use of gaps in 

regulatory frameworks across jurisdictions 

[1; 11; 12]. 

In this context, the blockchain is increasingly 

viewed as a critical component of financial infrastructure. 

Its reliability depends not only on the correct 

implementation of cryptographic mechanisms but also on 

the ability to detect suspicious transactions promptly, 

with minimal delays, approaching real-time [1; 9; 12]. 

This issue is particularly significant for the Ethereum 

ecosystem, where the base protocol guarantees the 

authenticity of signatures and the consistency of state but 

does not address the legitimacy of the motives behind 

monetary flows [5; 12]. The detection of toxic addresses, 

the construction of wallet risk profiles, and the 

identification of fraudulent chains are delegated to 

external analytics services and exchange solutions, which 

in practice often react only after funds have passed 

through cross-chain bridges, mixing services, and 

cascades of centralized platforms [5; 9; 12]. 

The combination of address pseudonymity and 

transaction transparency creates a complex situation. 

Formally, industrial-scale transaction graphs are 

accessible to everyone, but this does not guarantee the 

detection of complex fraudulent patterns [1; 12]. The 

public ledger stimulates the development of graph and 

temporal analysis methods, yet adversaries use the same 

data. Adaptation of schemes to common heuristics takes 

the form of splitting flows into small amounts, multi-step 

address carousels, and multi-stage cross-chain paths that 

blur topological and temporal signals [5; 12]. This gives 

rise to a continuous adaptation process between model 

developers and actors seeking ways to bypass heuristics. 

The most successful models maintain an advantage for a 

limited period, after which fraudsters change their 

evasion logic to minimize visible traces. 

[2; 6; 7; 12]. 

Classical anomaly detection methods based on 

threshold rules or simple statistical filters were designed 

for scenarios with centralized identification and stable 

behavioral profiles. In blockchain, analysts operate only 

with addresses, volumes, and timestamps, and are forced 

to compensate for the lack of context through aggressive 

feature engineering [1; 8; 12]. Performance improves 

only up to a point: multilayered fraud strategies adjust 

local behaviors to appear normal, and anomalies manifest 

only at the global level of the money flow pattern, which 

naturally leads to the formalization of graph and temporal 

models [2; 3; 7; 12]. 

A separate challenge is the extreme class imbalance 

typical of financial monitoring on open transaction 

graphs. The share of confirmed malicious nodes 

represents a small fraction of the dataset, and the simple 

proportion of correctly classified addresses is not an 

informative metric. A model that always optimistically 

classifies addresses as legitimate achieves more than 99 
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percent formally correct decisions but fails to detect rare 

events that are critical for security. Therefore, the metrics 

must be sensitive to the minority class: recall, F1, PR 

AUC, and the share of incidents at a constrained FP level 

[1; 2; 3; 8]. As a result, the task shifts from a binary 

decision to allocating analytical resources to the most 

suspicious segments of the graph, which aligns with the 

requirements of modern financial monitoring [1; 9]. 

At the same time, there is a growing demand for 

models that jointly capture graph topology and temporal 

dynamics while respecting constraints on computational 

resources and latency that are acceptable for practical 

deployment in the Ethereum network [2; 3; 7; 10]. Graph 

neural networks with temporal attention mechanisms, 

temporal GNN architectures, and attention-based 

models, such as TempoKGAT, demonstrate the ability to 

detect complex spatiotemporal patterns of fund flow 

more accurately under severe class imbalance [3; 7; 10]. 

At the same time, their practical value for Ethereum still 

requires further validation on realistic data streams, 

considering memory constraints, latency, and integration 

with exchange and regulatory services, which makes this 

research direction one of the key priorities 

[1; 2; 5; 9; 12]. 

Literature review. In the contemporary literature 

on blockchain ecosystem security, a persistent gap is 

emphasized between formally correct cryptographic 

implementation and actual protection against fraud. For 

Ethereum, this issue is particularly pronounced: core 

mechanisms guarantee the authenticity of transaction 

signatures but do not address the motives or admissibility 

of an operation. In the absence of a strong regulatory 

framework, a significant share of protective functions 

shifts to external analytics tools and informal practices 

[1; 7; 12]. Additionally, smart contracts, which have 

increased the platform’s attractiveness for developers, 

have simultaneously opened new avenues for exploits, 

logic errors, and opaque financial flows [1; 7; 12]. 

Classical approaches to fraud detection have historically 

focused on features tightly linked to an identifiable user 

and have relied on models such as logistic regression, 

decision trees, or ensembles of these models. In 

blockchain systems, such signals are either missing, 

fragmented, or weakly trusted. The lack of centralized 

identification limits analytics to abstract addresses and 

transactions, where auxiliary features are derived from 

the graph's structure or its history of cash flows [1; 12]. 

A particular focus is placed on studies that 

reconstruct latent address behavior using only public 

blockchain data through feature engineering [5; 11; 12]. 

Such methods include aggregates like mean or median 

balance, transaction counts, volume distributions, 

interaction frequencies with counterparties, and 

centrality metrics in the graph. They yield a substantial 

performance gain over naive models but quickly 

approach a ceiling in complex schemes where anomalies 

are visible only through the coordination of multiple 

addresses [1; 5; 11; 12]. 

Research in detection is increasingly oriented 

toward exploiting the structure of relationships among 

addresses. Graph neural networks alter the modeling 

perspective: a node is no longer treated as an isolated 

point, but as part of a complex network where 

information circulates among neighbors [2; 7; 6]. 

Convolution-based architectures propagate information 

through several topological layers, and neighbor 

sampling enables scaling to large graphs where complete 

aggregation is infeasible [2; 7]. Graph attention 

mechanisms provide additional flexibility, allowing the 

model to assign distinct weights to specific types of 

connections, which is crucial in graphs with numerous 

low-informative edges [2; 6; 10; 12]. 

Most current graph implementations rely on the 

assumption of structural stationarity, where the graph is 

fixed at a given moment, and internal connections are 

treated uniformly, regardless of transaction time. For 

Ethereum networks, such a simplified view risks 

distorting the genuine dynamics of cryptoassets. 

Moreover, many models assume that the graph or its 

substantial part fits into main memory, which is 

problematic for systems with millions of addresses and 

edges [2; 7; 9]. In parallel, temporal models are emerging 

that treat sequences of events as the primary object 

[3; 7; 8]. Recurrent architectures and their variants have 

long been the standard for time series tasks, allowing the 

accumulation of information about past states and their 

use when interpreting new signals [3; 8]. In blockchain 

analytics, this enables the observation of the evolution of 

transaction rates, volumes, or counterparties, while 

attention mechanisms allow the model to focus on critical 

episodes rather than the averaged profile [1; 7; 8]. 

Temporal approaches, however, poorly capture the 

position of an address within the broader network 

configuration; the operation sequence of an isolated 

node, even with heavy activity, may mask its role in a 

complex network attack [3; 2; 7]. This creates a 

methodological gap: graph models provide a better 

description of topology but oversimplify the temporal 

dimension, whereas sequential models focus on 

behavioral dynamics while largely ignoring structure 

[1; 3; 7]. In response to these limitations, a line of hybrid 

architectures is emerging that combines structural and 

temporal components [2; 3; 7; 10]. One strategy is to 

analyze graph snapshots at different time points 

sequentially, process them using graph networks, and 

feed the resulting representations into a recurrent or 

attention-based block to model dynamics [3; 7; 10]. 

Another approach integrates temporal information 

directly into the graph structure by annotating nodes and 

edges with timestamps and adapting state update rules to 

the temporal nature of the data [7; 10]. In parallel, work 

is underway on distributed training and graph temporal 

methods that distribute computation across nodes to 

improve scalability under challenging conditions 

[2; 6; 8; 9]. 

An important practical issue of hybrid solutions is 

the large number of parameters and resource demands, 

complex hyperparameter tuning, and an elevated risk of 

overfitting on small or extremely imbalanced datasets 

[1; 2; 3; 5]. Experience from real systems shows that 

ensembles of simpler models, where each component 

detects a specific aspect (static features, local 

connectivity, or temporal dynamics), often provide more 
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controllable and stable behavior than highly complex 

universal architectures [1; 3; 5; 8]. 

The overall review suggests that, despite the 

breadth of modern tools, a notable shortage of studies 

remains that explicitly focus on balancing model 

complexity with stable performance in production 

systems [1; 2; 5; 9]. Issues of scalability, resource 

consumption, interpretability of results, and decision 

latency are often secondary to improving offline metrics 

on test sets, which opens a research space for building 

hybrid architectures with a transparent and manageable 

structure that combines the relevant properties of graph 

and temporal models while controlling the number of 

parameters [1; 2; 7; 6; 10]. 

In this context, the purpose of the research is to 

propose and experimentally validate a hybrid neural 

architecture that combines expressive graph-based 

aggregation with a careful treatment of the temporal 

structure of transactions in the Ethereum network, while 

maintaining a manageable number of parameters and 

ensuring suitability for deployment under real-world 

blockchain workloads. 

1. Methodology

The study is based on the Kaggle Ethereum Fraud 

Detection dataset, which comprises 9,842 Ethereum 

addresses labeled as fraudulent [4]. Each record 

represents an address as a vector of 45 features, including 

transaction volumes, the number of interactions with 

unique counterparties, temporal statistics, and derived 

structural network characteristics, which is consistent 

with contemporary approaches to anomaly detection in 

blockchain graphs [5; 11; 12]. The feature matrix has the 

form X ∈ ℝ𝑁×𝑑, where 𝑁 = 9842 is the number of

addresses and 𝑑 = 45 is the feature space dimension – 

the label vector y ∈ {0,1}𝑁, where 𝑦𝑖 = 1 denotes a

fraudulent address. The dataset exhibits a strong class 

imbalance, with approximately 82 percent of records 

being legitimate and 18 percent fraudulent, which aligns 

with trends in financial fraud detection systems, where 

genuine events dominate [1; 2; 3]. Denoting the number 

of legitimate examples by 𝑁0, and the number of

fraudulent examples by 𝑁1, one obtains

𝑁1

𝑁0 + 𝑁1

≈ 0.18  (1) 

𝑁0

𝑁0 + 𝑁1

≈ 0.82  (2) 

which implies that most addresses do not exhibit 

suspicious activity, while significant financial losses are 

generated by a small subset of fraudsters [1; 2; 12]. 

Preprocessing comprised several stages. First, all 

features were standardized using the StandardScaler. For 

each feature 𝑗, the mean 𝜇𝑗 and standard deviation 𝜎𝑗were

computed, and the transformation 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗 − 𝜇𝑗

𝜎𝑗

 (3) 

was applied to achieve zero mean and unit variance along 

each coordinate, as recommended for deep models in 

financial data applications [1; 2; 3]. Such normalization 

is critical for deep networks when individual features 

have different scales, since this complicates optimizer 

convergence [1; 2]. The dataset was then split into three 

subsets: 70% for training, 15% for validation, and 15% 

for testing. This is formalized as three disjoint index sets 

𝐼𝑡𝑟𝑎𝑖𝑛 , 𝐼𝑣𝑎𝑙 , 𝐼𝑡𝑒𝑠𝑡 , with stratification, so that the proportion

of the positive class in each subset approximately 

matches the global ratio 𝑁1/𝑁 [1; 2; 3; 8]. The next step

was class balancing through weights. For class 

frequencies 𝑓0 = 𝑁0/𝑁і 𝑓1 = 𝑁1/𝑁 в the weights were

computed as 

𝑤0 =
1

𝑓0

 (4) 

𝑤1 =
1

𝑓1

 (5) 

and, after normalization, for this sample 𝑤0 ≈ 1.0,

𝑤1 ≈ 5.5. The importance of weighting the rare class has

been confirmed in studies on imbalanced data problems 

[2; 6; 9; 11]. 

The model architecture was chosen as a dense neural 

network (Dense NN). Unlike LSTM or GRU 

architectures, which require complete sequences, the data 

here are represented as aggregated features constructed 

from the interaction graph [1; 2; 5; 12]. This makes it 

possible to map the input address vector in the feature 

space via 

𝑓𝜃: ℝ𝑑 →, [0][1]  (6) 

where 𝑓𝜃(𝑥𝑖) is the estimated probability that an address

belongs to the fraudulent class. An explicit graph model 

would require an adjacency matrix 𝐴 ∈ {0,1}𝑁×𝑁, which

for large 𝑁 mposes memory and parameter count 

constraints and leads to typical overfitting risks [2; 3; 7]. 

Structural information is already incorporated through 

features such as the number of neighbors, counterparty 

types, balances, and centrality measures, which 𝑥⃗𝑖 is the

result of a preliminary mapping of the transaction graph 

into the feature space [2; 5; 12]. Regularization in the 

model is based on a combination of L2 penalty 𝜆 ∥ 𝜃 ∥2
2 

and dropout for hidden layers, which significantly 

constrains parameter growth and minimizes the risk of 

overfitting, especially for small, imbalanced samples 

[1; 2; 3]. Dropout enables the network to distribute 

information and temporarily suppress weight 

coadaptation, while the L2 penalty maintains a flat 

weight distribution, a standard practice in financial fraud 

and cybersecurity tasks [1; 2; 3]. 

Training is performed using Adam, an optimizer that 

adapts the step size for each parameter based on the first 

and second moments of the gradient. An initial learning 

rate of 𝜂0 = 1 × 10−4 provides stable convergence for

most standard architectures [1; 2]. To solve the task of 

classifying fraudulent addresses, the loss function is set 

to binary cross-entropy, which is the classical choice for 
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two-class problems with significant imbalance [1; 2; 3]. 

The loss for a single example is given by 

ℓ𝑖 = −(𝑦𝑖log 𝑝𝑖 + (1 − 𝑦𝑖)log (1 − 𝑝𝑖))     (7) 

and the total loss with class weights is 

ℒ(𝜃) =
1

𝑁
∑ 𝑤𝑦𝑖

𝑁

𝑖=1
ℓ𝑖 .     (8) 

Confident misclassifications receive higher penalties, 

which is crucial in settings where missed fraudulent 

addresses carry an exceptionally high cost 

[1; 2; 3; 8]. 

The mini-batch size varied from 128 to 1024. 

Initially, smaller batches introduced noise and helped 

escape local minima, while increasing the batch size in 

later epochs improved training efficiency [1; 2; 3]. An 

early stopping mechanism was used, terminating training 

when the validation loss failed to improve for more than 

15 epochs, combined with a learning rate reduction when 

the loss plateaued [1; 2, 3]. Accuracy is not very 

informative for such a dataset, 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

because it does not account for missed fraudulent cases, 

the evaluation focuses on precision, recall, F1 score, area 

under the ROC curve, and the behavior along the 

precision-recall curve, following recommendations for 

fraud detection models [1; 2; 3; 8]. These metrics are 

defined as 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

𝐹1 = 2
Precision ⋅ Recall

Precision + Recall
 (12) 

Here, the ROC AUC reflects ranking quality across 

all thresholds, while the precision-recall curve is more 

indicative for class-imbalanced datasets and serves as the 

basis for selecting the operating threshold [1; 2; 3]. 

2. Model Architecture

In financial fraud detection tasks, there is a natural 

temptation to employ highly complex models, such as 

GRU stacks with attention mechanisms, graph 

convolutional layers, and residual connections, primarily 

since recent work on financial fraud and blockchain 

anomalies reports accuracy values close to 99 percent on 

massive datasets [1; 2; 6]. On small datasets, the situation 

changes, because the same architectures, without strong 

regularization, tend to memorize training examples and 

implement mappings 𝑓(𝑥𝑖) ≈ 𝑦𝑖  essentially only for

elements of the training set, with minimal generalization 

to new addresses, which is a typical issue for deep models 

in financial fraud problems [1; 2; 3]. 

In the present setting, the dataset size is limited, so the 

architectural complexity is tightly controlled. If the 

number of model parameters is denoted by 𝑃(𝜃), тthen 

each additional dense layer with 𝑛𝑖𝑛 inputs and 𝑛𝑜𝑢𝑡

outputs contributes 

𝑃𝑑𝑒𝑛𝑠𝑒 = 𝑛𝑖𝑛 ⋅ 𝑛𝑜𝑢𝑡 + 𝑛𝑜𝑢𝑡   (13) 

that is, new degrees of freedom, and when 𝑃(𝜃) ≫ 𝑁 the 

model is almost inevitably driven toward overfitting, as 

documented in deep learning surveys for fraud detection 

[1; 2]. Considering this, a sequential fully connected 

architecture with two hidden layers is deliberately chosen 

instead of convolutional or recurrent structures, which 

are more justified for strictly sequential or explicitly 

graph-based input representations [1; 2; 3; 7]. Model 

interpretability is just as important as numerical metrics. 

When the model flags a particular address as fraudulent, 

practical deployment requires at least an approximate 

answer to the question why this address was chosen, 

which aligns with explainability requirements in 

financial systems and regulatory approaches to fraud 

[1; 2; 6]. Deep, multi-branch models with graph layers 

and complex attention mechanisms, such as SEFraud or 

ASA GNN, are significantly harder to explain to 

stakeholders and regulators. In contrast, a two-layer 

dense network remains sufficiently transparent to support 

post-hoc interpretation methods, such as SHAP or 

gradient-based attribution, which have already been 

described in the context of financial fraud analysis [1; 6]. 

The architecture graph is linear. The input layer 

receives 45 normalized features, formally a vector 

𝑥 ∈ ℝ45, which corresponds to aggregated transactional,

network, and temporal characteristics, as in typical 

datasets for fraud and blockchain anomalies 

[4; 5; 12]. The first hidden layer is dense with 128 

neurons, and its number of parameters is 

𝑃1 = (45 ⋅ 128) + 128 = 5888, 

while the ReLU activation 𝑅𝑒𝐿𝑈(𝑧) = max (0, 𝑧) allows 

established practice in tabular and graph-oriented 

financial fraud tasks [1; 2; 3]. Batch normalization is then 

applied, which for an activation vector ℎ ∈ ℝ128

transforms each component as 

ℎ̂𝑗 =
ℎ𝑗 − 𝜇𝑗

√𝜎𝑗
2 + 𝜖

, 𝑦𝑗 = 𝛾𝑗ℎ̂𝑗 + 𝛽𝑗   (14) 

where 𝜇𝑗 and 𝜎𝑗
2 are mini-batch estimates of mean and

variance, and 𝛾𝑗 , 𝛽𝑗 act as learnable scale and shift

parameters, stabilizing the activation distribution and 

permitting more aggressive learning rate settings, as 

recommended in deep learning studies on fraud detection 

[2; 3]. Dropout with probability 𝑝 = 0.5 is applied after 

normalization. For each component 𝑦𝑗, a random mask

𝑚𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) is sampled, and during training

𝑦̃𝑗 =
𝑚𝑗

1 − 𝑝
𝑦𝑗  (15)
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is used, meaning that roughly half of the neurons are 

randomly zeroed, while the remaining ones are rescaled 

to preserve the expected activation level. This approach 

distributes information across many neurons and reduces 

the risk of overfitting, as advised for small and 

imbalanced financial datasets [1; 2; 3]. 

The second hidden layer is also dense, but with 64 

neurons, thus reducing the representation dimension; its 

parameter count is 

𝑃2 = (128 ⋅ 64) + 64 = 8256, 

and ReLU is again used as the activation function. This 

is followed by another batch normalization layer and 

Dropout with the same probability 𝑝 = 0.5, forming a 

regularization symmetric block that matches 

conservative training practices in fraud detection 

[1; 2; 3]. The output layer contains a single neuron with 

sigmoid activation 

𝑦̂ = 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (16) 

where 𝑧 = 𝑤⊤ℎ + 𝑏, а ℎ ∈ ℝ64 is the output of the

second hidden layer, and the number of parameters in the 

output layer is 

𝑃3 = 64 ⋅ 1 + 1 = 65. 

The total number of model parameters is computed as 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃𝐵𝑁   (17) 

where 𝑃𝐵𝑁 accounts for the parameters of both batch

normalization layers (scales and shifts). In this 

configuration, the total number of parameters is 14977, 

which can be regarded as a manageable level for a 

training set of one to two thousand examples, typical of 

public fraud and blockchain anomaly datasets [1; 2; 4]. 

The choice of a relatively aggressive Dropout value 

𝑝 = 0.5 requires additional justification. In image or text 

tasks, typical values range from 0.2 to 0.3. However, after 

the 70/15/15 split, only about 1,500 training examples 

remain, with roughly 270 belonging to the positive class, 

creating an extreme imbalance [1; 2; 3]. Under these 

conditions, the ratio 
𝑃𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑟𝑎𝑖𝑛
 is fairly large, and the model 

tends to memorize primarily positive examples; Dropout 

𝑝 = 0.5 combined with an L2 penalty with a coefficient 

𝜆 = 0.01 adds the term 

ℒ𝑟𝑒𝑔(𝜃) = 𝜆 ∑ 𝜃𝑘
2

𝑘

 (18) 

to the loss function, constraining weight growth and 

steering the model toward solutions with smaller norms 

∥ 𝜃 ∥2, in line with recommended anti-overfitting

strategies in fraud detection [1; 2; 3]. Batch 

normalization additionally serves a regularizing role, 

since 𝜇𝑗 and 𝜎𝑗
2 are estimated at the mini-batch level, and

each training step injects slight noise into the activation 

distribution. Combined with early stopping, which halts 

training when ℒ𝑣𝑎𝑙  it does not improve for 15 epochs, and

with learning rate reduction on validation loss plateaus, 

this yields a conservative training regime [1; 2; 3]. The 

combination of Dropout, L2 regularization, batch 

normalization, early stopping, and adaptive learning rate 

reduction represents a deliberate compromise in which 

the model does not reach maximal training accuracy. 

Instead, it achieves more stable and higher F1, ROC 

AUC, and PR AUC values on validation and test sets, as 

recommended in surveys on fraud and blockchain 

anomaly detection [1; 3; 2; 8]. 

The initial 45 features can be naturally divided into 

three groups that capture different aspects of address 

behavior. Transactional features describe the number of 

incoming and outgoing operations and the average and 

extreme transfer amounts; network features encode the 

structure of the local neighborhood in the interaction 

graph, including the number of unique counterparties, 

aggregated partner balances, and simple centrality 

indicators; temporal features capture the distribution of 

transactions over time and the irregularity of activity, 

consistent with feature construction practices for 

Ethereum and Bitcoin fraud [4; 5; 12]. Formally, all of 

them are represented by a vector 𝑥 ∈ ℝ45, but each

subgroup lies in its own subspace 

ℝ𝑑𝑡𝑥 ⊕ ℝ𝑑𝑛𝑒𝑡 ⊕ ℝ𝑑𝑡𝑖𝑚𝑒 , reflecting different information

types and allowing the model to indirectly account for 

local topology and temporal patterns encoded in the 

feature space [4; 6; 7; 12]. 

3. Results Of Training and Analysis

The training metrics of the model exhibit behavior 

typical of deep learning algorithms applied to financial 

transaction datasets with a strong class imbalance. The 

loss and accuracy curves follow a characteristic pattern 

for tasks in which most examples belong to the safe class, 

while fraudulent examples may have structurally 

distinctive features. The rapid improvement phase is 

short, but the effect of regularization is pronounced. 

Aggressive Dropout and L2 settings restrain overfitting 

and preserve stability even on a limited sample, although 

this does not guarantee the same level of data realism in 

a production environment. 

The dynamics of learning metrics are shown in 

Fig. 1. The three plots reveal a consistent trend. The loss 

decreases to operating values around 0.35, validation 

accuracy stabilizes at approximately 0.95, and the AUC 

increases monotonically to 0.9788, which falls within the 

range interpreted as excellent discriminative 

performance. In practice, such behavior is typical for 

configurations where the number of parameters exceeds 

the data volume and regularization methods (such as 

Dropout, L2, and batch normalization) are applied 

stringently. The validation loss behavior after the 60th 

epoch, along with occasional fluctuations in accuracy, 

does not indicate critical overfitting; however, early 

stopping could help save computational resources. 

These metrics are not universal and always depend on 

the quality of the dataset. In this case, the dataset is 

already cleaned and prefiltered, which compensates for 

some limitations of the simpler architecture. The area 
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under the ROC curve (AUC) is more critical here than 

raw accuracy, because the final decision is made with a 

variable classification threshold, and system behavior is 

adjusted to the user’s specific risk tolerance. 

Fig. 1. Dynamics of model training performance metrics 

The confusion matrix reveals a clear structure of 

classification outcomes on the test set, presented in 

Fig. 2. The model correctly classified 1507 legitimate 

addresses as safe (TN) and 361 as fraudulent (TP), while 

26 legitimate addresses were flagged as suspicious (FP) 

and 75 fraudulent addresses were missed (FN). False 

positive errors maintain a more acceptable risk profile; 

their cost is limited to temporary user inconvenience and 

an additional marker for KYC or manual checks, and 

many industrial fraud prevention systems treat a low 

single-digit FP rate as operationally acceptable. False 

negatives, by contrast, pose systemic risk because they 

correspond to direct financial losses or undetected 

attacks. Out of 436 fraudulent addresses, 75 remained 

undetected, resulting in a false negative rate of 

approximately 17.2 percent. This level is high for a 

standalone system but acceptable as a first layer in a 

multistage control cascade where external heuristics and 

regulatory instruments provide subsequent blocking. 

Precision Recall curve, located in the upper part of the 

value range, confirms model robustness under threshold 

variation; for recall above 0.8, precision remains higher 

than 0.9, which allows adjustment of the operating 

threshold without substantial quality degradation and 

keeps FP within bounds that are acceptable for primary 

screening tasks. 

Fig. 2. Confusion matrix of classification outcomes 

Qualitative assessment of the model is expressed 

through ROC and Precision Recall curves, shown in Fig. 

3. The ROC curve preserves an almost ideal steepness in

the region of low false positive rates, maintaining the

actual positive rate above 0.90 at FPR below 0.03. At the

same time, an AUC of 0.9788 indicates high-quality risk

ranking and nearly optimal class separation under this

metric.

Fig. 3. Curves for evaluating classification quality 

The detailed classification report highlights nuances 

in the region of class imbalance. For legitimate addresses, 

precision, recall, and F1 remain consistently high, 

whereas for fraudulent addresses, recall is lower, at 

0.828, which is a direct consequence of the architectural 

compromise. Aggressive regularization with a Dropout 
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Rate of 0.5 effectively constrains overfitting but prevents 

achieving the optimal recall for the minority class. 

Reducing Dropout to 0.3 increases training accuracy, yet 

validation AUC decreases, and the number of FNs grows, 

once again confirming the lack of parameter portability 

between test and production samples. The model operates 

as part of a cascade and can guarantee practical 

robustness against fraud only when combined with 

additional heuristics and external monitoring. 

Discussion of results 

The obtained AUC value of 0.9788 on a sample of 

approximately 2000 Ethereum addresses indicates a high 

discriminative capacity of the dense neural model under 

consideration; however, it more accurately delineates an 

upper bound for this specific task and dataset rather than 

establishing a universal deployment standard. For Kaggle 

like financial datasets with carefully selected and 

aggregated features, it confirms the model’s ability to 

exploit patterns already embedded in the feature space. 

However, the question of detecting novel, weakly labeled 

anomalies remains open. Outside a controlled 

environment, where fraud structures evolve and are not 

promptly reflected in the training data, such an 

architecture may lose part of its effectiveness precisely 

because of the limitations of the underlying feature space. 

In studies employing full graph neural networks that 

operate with explicit adjacency matrices, multi-layer 

message passing, and contrastive learning, AUC scores 

in the 0.92–0.95 range are typical on unfiltered on-chain 

data. These values are formally lower than those obtained 

in this work, but they are achieved under stronger noise, 

fragmented labeling, and less aggressive preprocessing. 

Therefore, a direct numerical comparison is not 

appropriate without a unified feature engineering 

scheme. Furthermore, graph-based models differ 

substantially in computational complexity. While the 

dense model considered here, with roughly 15000 

parameters, has linear complexity 𝑂(𝑁) and processes 

examples independently, typical GCN or GAT variants 

scale as 𝑂(𝑁 + 𝐸) or worse, depending on the edge 

density, and require recursive neighbor queries and 

subgraph storage in memory. For systems operating in 

near real time, where each millisecond of latency is 

critical, this creates a considerable barrier to deployment. 

For a small, heavily preprocessed sample, the 

experiments demonstrate that a compact, dense model 

can be as effective as more complex architectures, 

provided that structural and temporal information have 

already been distilled into informative, aggregated 

features. However, these observations cannot be directly 

applied to real-world on-chain streams in production 

environments, where millions of addresses, dynamic 

graph structures, new node types, and evolving 

interaction patterns are present. Under such conditions, 

the advantage of graph-based approaches, which can 

model deep topology and inter-address dependencies, 

may become more pronounced. 

The specificity of the obtained results lies not only in 

the AUC level but also in the nearly symmetric precision 

for both classes, 0.95 for legitimate and 0.93 for 

fraudulent addresses, at a class ratio of about 3.5 to 1. 

This case is representative of problems dominated by 

everyday examples, where the precision of the minority 

class typically degrades if the imbalance is not 

considered or the class weights are poorly chosen. In the 

presented configuration, optimal tuning of class weights 

and regularizers partially compensates for the small 

sample size, maintaining sensitivity to fraudulent 

patterns without sharply increasing the number of false 

positives. The confusion matrix confirms that the model 

retains an acceptable FP profile for primary screening 

while keeping the proportion of missed fraudulent 

addresses at a level compatible with a cascaded defense 

scenario in which subsequent analysis layers further 

narrow the risk perimeter. 

An indirect graph representation, that is, a feature set 

derived from the transaction graph without an explicit 

adjacency matrix, enables a robust solution for a small 

dataset without losing the basic transactional context. 

Structural characteristics, such as neighbor counts, 

counterparty profiles, aggregated balances, and simple 

centrality measures, together with temporal statistics, 

including activity distributions over time and burst 

patterns, transform the original graph into a tabular space 

in which the proposed neural architecture operates 

effectively. From a resource perspective, this is often a 

more balanced approach than forcing GNN or sequence 

models on a few thousand addresses or short transaction 

chains, especially when memory budgets and allowable 

latency are constrained. Another advantage is 

transparency: analyzing input feature weights and model 

behavior at the level of feature groups simplifies 

interpretability for stakeholders and regulators compared 

with profound message passing networks. 

The temporal dimension considerably limits the use 

of AUC as a universality indicator. A model trained on 

historical blockchain activity snapshots inevitably 

encounters distribution drift when processing new 

transaction streams. This concerns both the emergence of 

new fraud patterns and the gradual change in the behavior 

of legitimate users and infrastructure nodes. In financial 

anti-fraud systems, an AUC drop of 8–10 percentage 

points over several months, without retraining, is already 

considered a warning signal, regardless of the initial 

performance level. From this perspective, the current 

dense network configuration serves as an optimal first-

level filter for a relatively narrow time window and a 

specific subgraph; however, it cannot be considered 

stable in the absence of update mechanisms. 

The simplicity of the architecture and modest 

memory requirements, in contrast to the need to keep 

large graphs in RAM for GNNs, create favorable 

conditions for a strategy of regular retraining on fresh 

data. Periodic fine-tuning on updated samples allows the 

model to adapt to distribution drift without drastically 

increasing structural complexity or inference costs. At 

the same time, such a tabular architecture cannot serve as 

a standalone solution for systemic defense against 

evolving attacks. A rational strategy is to employ it as one 

layer in a multi-level system where heuristic rules, 

signatures of known schemes, aggregated graph features, 

and online adaptation mechanisms adjust weights on 
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current data and sustain the overall robustness of the 

system. 

Conclusions 

The regularized dense neural model with carefully 

balanced classes demonstrates performance comparable 

to more complex architectures for the task of detecting 

fraudulent Ethereum addresses, provided that rich, semi-

manually aggregated features are available. The high 

AUC, together with balanced precision and recall for 

both classes, indicates that the model can capture 

complex, nonlinear combinations of transactional, 

network, and temporal characteristics without additional 

graph-based or sequence blocks. The strength of the 

approach lies not only in the numerical metrics but also 

in the absence of clear signs of overfitting on a small and 

imbalanced dataset. A flexible class weighting scheme, 

combined with Dropout and L2 regularization, provides 

a productive balance between model complexity and 

generalization ability, reducing the risk of over-

sensitivity to individual addresses or local structures. 

At the same time, the main limitations of the tabular 

architecture are linked to insufficient exploitation of the 

explicit transaction graph topology and detailed temporal 

dynamics. These aspects are crucial for identifying 

multihop laundering schemes, cascading attacks, 

composite cross-chain paths, and scenarios where 

anomalies manifest only at the level of global fund flow 

patterns. Moving to a hybrid model that augments 

aggregated features with compact graph embeddings and 

sequential or contextual vectors from Transformer 

architectures can shift the balance between complexity 

and quality toward better capture of spatio-temporal 

dependencies. This approach enables the combination of 

the interpretability and resource efficiency of the tabular 

model with the expressiveness of graph and temporal 

mechanisms. 

Further development of the solution is best aligned 

with adaptive training regimes. Introducing federated or 

at least regular online fine-tuning would transform the 

static dense model into a component that gradually adapts 

to new fraud patterns, distribution drift, and protocol 

changes. In this configuration, the tabular architecture 

serves as a lightweight and interpretable first-level filter. 

At the same time, more complex graphs and temporal 

blocks handle a subset of high-risk addresses, providing 

deeper contextual analysis. 

The current results should be viewed as a reference 

for model behavior on a particular historical snapshot and 

Ethereum subgraph rather than as a universal guarantee 

of future performance. High AUC values and balanced 

precision indicate that the model is ready for integration 

into multi-level analytics for a blockchain service, but 

this is feasible only under continuous monitoring of 

distribution drift, periodic validation on updated samples, 

and scheduled parameter updates. In practice, robustness 

and security are ensured not by a single classifier with 

record AUC, but by a flexible ecosystem of filters in 

which each component, from simple heuristics and 

signatures to graph and temporal models, can both 

individually and jointly respond to environmental 

changes and evolving risk patterns. Within such an 

ecosystem, the dense neural model considered here 

serves as a complexity-controlled and interpretable base 

module on top of which hybrid architectures for proactive 

identification of fraudulent accounts in the Ethereum 

blockchain can be constructed. 
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ГРАФОВІ ТА ЧАСОВІ НЕЙРОННІ МОДЕЛІ ДЛЯ ПРОАКТИВНОЇ ІДЕНТИФІКАЦІЇ ШАХРАЙСЬКИХ 

ОБЛІКОВИХ ЗАПИСІВ У БЛОКЧЕЙНІ ETHEREUM 

В. В. Просолов, О. С. Кушнерьов, В. Є. Сокол, Р. В. Трофименко 

Анотація .  Актуальність. Шахрайські активності у блокчейні Ethereum становлять суттєвий ризик для 

децентралізованих фінансів і потребують моделей, здатних не лише реагувати на вже виявлені зловживання, а й 

проактивно ідентифікувати підозрілі облікові записи до ескалації збитків. Предметом дослідження є застосування 

графових і часових нейронних моделей до задачі класифікації акаунтів Ethereum на доброчесні та шахрайські з 

урахуванням структурних зв’язків між адресами й динаміки транзакцій у часі. Метою статті є розроблення та 

експериментальна оцінка нейронної архітектури на основі багатошарового персептрона як базового компонента для 

подальшої інтеграції графових і часових механізмів, а також аналіз її ефективності на відкритому датасеті Ethereum Fraud 

Detection з високим класовим дисбалансом. Були отримані наступні результати. Побудовано базову глибинну модель 

для бінарної класифікації облікових записів із використанням попередньої обробки ознак, стратифікованого поділу 

вибірки, балансування ваг класів, регуляризації L2, Dropout і ранньої зупинки, що дало змогу досягти значення ROC AUC 

близько 0.98 за умов значної переваги “безпечного” класу. Детальний аналіз матриці неточностей та метрик precision, 

recall, F1 показав прийнятний компроміс між зменшенням хибнопозитивних спрацювань і мінімізацією частки 

пропущених шахрайських акаунтів, що є критичним для реальних фінансових сценаріїв. Висновок. Результати свідчать, 

що коректно спроєктована базова нейронна модель на табличних ознаках здатна забезпечити високу якість проактивної 

ідентифікації шахрайських облікових записів в Ethereum та слугувати відправною точкою для подальшої інтеграції 

графових і часових архітектур, орієнтованих на покращення інтерпретованості й стійкості до еволюції шаблонів 

зловмисної поведінки. 

Ключові  слова :  блокчейн Ethereum; шахрайство; графові нейронні мережі; часові моделі; ідентифікація ризиків; 

машинне навчання; транзакції. 
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