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RESEARCH ON THE EFFECTIVENESS OF METHODS OF THE TRAIN CRITICAL

SPEED CALCULATION

Abstract. Topicality. Determining the critical velocity of railway rolling stock is a key step in the design and operation of
modern trains, as exceeding this velocity leads to sustained lateral oscillations, increased lateral forces at the wheel-rail contact,
and consequently a higher risk of derailment. Given the deteriorating condition of rolling stock and track infrastructure, reliable
and efficient prediction of critical velocity based on modern computational methods has become increasingly necessary. The
subject of study is the effectiveness of machine learning methods for approximating critical velocity under conditions of
nonlinear dependencies and limited data availability. The purpose of the article is to identify the most effective method for
subsequent implementation in the Driver Decision Support System (DDSS) and as a component of the train curvilinear motion
model. The following results were obtained: MLP (Multilayer Perceptron) and GPR (Gaussian Process Regression) models
demonstrated high prediction accuracy on both small and large datasets; however, MLP exhibited better scalability compared
to GPR as the training dataset size increased. Conclusion. Based on the comparative analysis conducted, MLP is recommended
as the primary model for critical velocity estimation within the DDSS and for railway transport diagnostics.
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Introduction

Problem relevance. Research into oscillatory
processes and motion instabilities of railway vehicles
equipped with conventional solid-axle wheelsets is
becoming increasingly relevant today, driven by the
necessity to compensate for the deteriorating condition of
rolling stock through comprehensive optimization of its
motion.

The lowest velocity at which self-sustained lateral
oscillations (hunting) of the wheelset—bogie system
emerge is termed the critical velocity. Determining the
critical velocity is a crucial task in the development and
design of railway vehicles. If a vehicle operates at
velocities exceeding the critical velocity, dynamic
processes triggered by perturbations may fail to damp out
and instead lead to sustained oscillations of the vehicle.
Although such motions may be stable in the
mathematical sense, this behavior is referred to as
unstable motion. Since severe oscillations can generate
high lateral forces between the wheel and rail and
consequently increase the risk of track displacement or
even derailment — such behavior must be avoided under
normal operating conditions [1, 2]. In other words, the
critical velocity imposes an upper bound on the
permissible operating velocity of a railway vehicle.

Given the constant deterioration of both railway
infrastructure and rolling stock, which leads to a dynamic
reduction in the safe operating speed of trains in real time,
the ability to quickly and reliably assess critical speed has
become not just an advantage, but an operational
necessity to prevent instability caused by fluctuations and
reduce the risk of derailment.

Literature review. A substantial body of research
has been devoted to the issue of critical velocity.
Exceeding the critical velocity is identified as one of the
potential causes of train derailments [3]. Studies have
examined the influence of the track and its underlying

substructure on the critical velocity value [4-6], as well
as the possibility of determining this parameter by
analyzing the effects that motion at critical velocity
exerts on the track [7, 8]. Two computational approaches
for critical velocity estimation are commonly discussed:
the trajectory-following method, which enables
automated calculation, and the brute-force method.
However, due to its reliance on the periodicity of
solutions, the trajectory-following method is inherently
limited to strictly periodic motion patterns.
Consequently, the brute-force method proves more
suitable for critical velocity estimation along complex
(non-periodic) trajectories [9].

Critical velocity computation is a non-trivial task.
This value depends on a multitude of variables, constant
parameters, and train motion characteristics many of
which influence the critical velocity in a highly nonlinear
manner. Given the inherent complexity of railway
vehicle dynamics, direct computation of critical velocity
based on the existing mathematical model of curvilinear
motion dynamics [10] is impractical. Classical methods
for estimating critical velocity rely on linearized stability
analysis or time-domain simulation with incremental
speed sweeps. However, these approaches assume
idealized track geometry, neglect degradation effects
(e.g. wheel profile wear, suspension hysteresis), and
demand high-fidelity models that are computationally
prohibitive for real-time implementation. Moreover, they
often fail to account for stochastic disturbances (e.g., rail
joints, track irregularities), resulting in over-optimistic
estimates of stability margins.

Therefore, this study proposes to approximate the
critical velocity using appropriate computational tools
adapted to this specific challenge.

The purpose of the research is to comparatively
evaluate three supervised regression methods —
Multilayer Perceptron (MLP), Gaussian Process
Regression (GPR), and Support Vector Regression
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(SVR) — for their ability to approximate the critical
velocity of railway rolling stock under strongly nonlinear
parameter dependencies and limited data availability;

The most efficient method will subsequently be
employed to develop a critical velocity estimation
module within the Driver Decision Support System
(DDSS) and as a component of the train curvilinear
motion model.

1. Methods of critical speed calculation

Let's look at a train going through a curved section
of track with a constant radius of curvature R = 500.
Within the existing model of curved train movement, the
following dependencies apply to the critical velocity V..
dependence on the conicity of the wheel pair y, on the
nominal rolling radius 7y, on the angular stiffness of the
bogie-body connections C. These dependencies are
nonlinear and can be conditionally represented as
follows:

Ver « rﬁ )

From the above relationship, it follows that the
critical velocity is directly proportional to the nominal
rolling radius 1, and the angular stiffness C, and inversely
proportional to the square root of the wheelset conicity y.
Based on these dependencies, approximation of the
critical velocity is feasible.

The following tools suitable for critical velocity
approximation are considered:

Multilayer Perceptron (MLP) — a class of
feedforward artificial neural networks consisting of at
least three layers: input, one or more hidden layers, and
output. Except for the input layer, all neurons employ a
nonlinear activation function.

Gaussian Process Regression (GPR) — a powerful
and flexible non-parametric regression technique used in
machine learning and statistics. It is especially useful for
problems involving continuous data where the
relationship between input variables and the output is
unknown or highly complex. GPR is a Bayesian
approach that quantifies uncertainty in predictions,
making it valuable for applications such as optimization
and time-series forecasting. It is based on the concept of
a Gaussian process — a collection of random variables,
any finite subset of which follows a joint Gaussian
distribution.

Support Vector Regression (SVR) — a variant of
Support Vector Machines (SVMs) used for regression
tasks. Its objective is to find a function that best predicts
a continuous output value for a given input. SVR can
employ either linear or nonlinear kernels. A linear kernel
computes the simple dot product of two input vectors,
whereas a nonlinear kernel (e.g., radial basis function —
RBF) captures more complex patterns in the data. The
choice of kernel depends on data characteristics and
problem complexity.

2. Experimental analysis of selected methods

To evaluate the performance of the selected
methods in predicting critical velocity, the following
standard metrics were used:

RMSE — Root Mean Square Error

2
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where: yfTe

— true (reference) critical velocity
from the dataset; yipmd — predicted critical velocity; N —
number of samples in the test set; R? — Coefficient of

Determination:
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Two datasets were compiled for the analysis: a
small-scale and a large-scale dataset, containing
variations of critical velocity corresponding to different
parameter combinations (y,1,, C). These datasets were
used to train the models, all implemented in MATLAB.

The resulting prediction accuracy graphs are
presented in Figures 1-6.

Figures 1-3 show the prediction accuracy of the
models trained on the small dataset. It can be observed
that both MLP and GPR successfully approximate the
critical velocity, with GPR achieving higher accuracy
than MLP. In contrast, SVR performs poorly on this task.
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Fig. 1. Critical velocity prediction using the MLP model
trained on a small dataset
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Critical velocity prediction(R?= q.9987)
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Fig. 2. Critical velocity prediction using the GPR model
trained on a small dataset
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Fig. 3. Critical velocity prediction using the SVR model
trained on a small dataset

It can be observed that both MLP and GPR
successfully approximate the critical velocity, with GPR
achieving higher accuracy than MLP. In contrast, SVR
performs poorly on this task.

Figures 4—6 present results for models trained on
the large dataset:
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Fig. 4. Critical velocity prediction using the MLP model
trained on a large dataset
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Fig. 5. Critical velocity prediction using the GPR model
trained on a large dataset

Critical velocity prediction (R?=0.9743)
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Fig. 6. Critical velocity prediction using the SVR model
trained on a large dataset

On the large dataset, both MLP and GPR remain
effective, but GPR accuracy decreases with increasing
data volume, whereas MLP accuracy improves,
demonstrating better scalability. SVR continues to
underperform on both small and large datasets.
Consequently, considering the prospect of further data
and parameter expansion, the MLP model is the most
appropriate choice for critical velocity prediction.

To further validate MLP’s effectiveness, an
additional comparison was performed for the dependence
of critical velocity on wheelset conicity y (with other
parameters held constant):
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Fig. 7. Comparison of critical velocity vs. wheelset

conicity with other parameters held constant

As shown in Figure 7, MLP approximates the
critical velocity with an error of RMSE = 0.51 km/h
indicating a very high level of accuracy.

Discussion of results

The comparative analysis of the three machine
learning models — Multilayer Perceptron (MLP),
Gaussian Process Regression (GPR), and Support Vector
Regression (SVR) —reveals distinct performance patterns
depending on dataset size and underlying parameter
dependencies.

All models were trained using a limited number of
parameter combinations. As shown in Figures 1-3, on the
small dataset both MLP and GPR successfully captured
the nonlinear relationship governing critical speed,
achieving high fidelity with respect to reference values
derived from the high-fidelity curvilinear motion model
[8]. Notably, GPR exhibited marginally superior
accuracy (R? = 0.9987) attributable to its Bayesian
nature and inherent ability to infer smooth functional
forms from sparse data. In contrast, SVR (Figure 3) failed
to generalize: its predictions showed significant
deviation, particularly at the extremes of the conicity
range, yielding R? = 0.9721 indicating poor adaptability
to the underlying dynamics.

When scaling to the large dataset, the behavior
diverged markedly (Figures 4—6). MLP’s performance

improved: R? value rose to 0.9997 confirming its strong
learning capacity and scalability with increasing data
volume. This aligns with the known strengths of deep
feedforward networks in  approximating high-
dimensional nonlinear mappings when sufficiently
trained. Conversely, GPR’s accuracy degraded. SVR
remained consistently unreliable across both dataset
sizes. In summary, the results demonstrate that: MLP
offers the best trade-off between accuracy, robustness,
and scalability; GPR is suitable for small-data
prototyping but becomes inefficient and less accurate as
data grows; SVR is unsuitable for this specific regression
task under the tested configurations.

Conclusions

Three supervised regression methods — Multilayer
Perceptron (MLP), Gaussian Process Regression (GPR),
and Support Vector Regression (SVR) — were
comparatively evaluated for their ability to approximate
the critical velocity of railway rolling stock under
strongly nonlinear parameter dependencies and limited
data availability; Appropriate metrics were selected to
evaluate models performance, and a comparative
assessment of their effectiveness and accuracy was
conducted. The results show that both MLP and GPR
achieve high prediction accuracy on both small and large
datasets, with MLP demonstrating superior scalability
and improved accuracy as the dataset size increases,
whereas GPR performance degrades under the same
conditions. In contrast, SVR exhibits insufficient
prediction accuracy across all dataset sizes.

A further experiment involved isolating the
dependence of critical speed on wheelset conicity y under
fixed 1y and C confirms not only global approximation
capability but also local sensitivity preservation — a
critical requirement for real-time safety systems such as
the Driver Decision Support System (DDSS)

Consequently, the MLP model is selected for
further implementation as a core component of the
critical velocity estimation module within the Driver
Decision Support System (DDSS) and as part of the train
curvilinear motion model.
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JOCJIKEHHS EPEKTUBHOCTI METOIIB OBYUCJIIEHHA KPUTHYHOI IIBUAKOCTI PYXY ITOI3/1A
0. C. €Brymenko, O. 10. 3akoBopoTHHit

AHoTanisi. AKTyajabHicTh. Bu3HaueHHS KPUTHYHOI IIBHIKOCTI 3aJII3HUYHOTO PYXOMOTO CKJIAIy € KIIOYOBHM €TaIlloM
IIPY TIPOSKTYBaHHI Ta EKCIUIyaTalii Cy4acHHMX IOi3/iB, OCKUIBKM IIEPEeBHIIEHHS Ili€i IMIBUAKOCTI NPH3BOIUTH JO CTIHKHX
MIONIEPEYHUX KOJIMBAHb, 3pOCTaHHS OIYHUX CHJI y KOHTAKTI KoJieca 3 PeiKoIo i, sIK HaCJiI0K, 301IBIICHHS] PH3HKY CXOIY PyXOMOTO
CKJIaay 3 Koiii. ¥ 3B’S3Ky 3 HOTIPIICHHSAM CTaHy PYXOMHX CKJIaJiB i IUITXOBOTO T'OCIIONAPCTBA, CTa€ HEOOX1THIM 3a0e3eUeHHS
HAJIHHOTO Ta €(peKTUBHOTO MPOTHO3yBAaHHS KPUTHYHOT IIBUIKOCTI HA OCHOBI CydacHHMX oOuncioBanbHuX MeToxiB. [lpeamerom
JIOCJTizKeHHs € e(pEKTHBHICTh METO/IB MAIIMHHOTO HABYAHHS JUIS alpOKCHMANii KPUTHYHOI MIBUAKOCTI B YMOBAX HENIHIHUX
3aJIeKHOCTEH Ta 00MeXeHOTro 00csary nanux. MeTor cTaTTi € BigOip HalOLIbI ehEeKTHBHOTO METOLY OOYHMCIEHHS KPHUTHYIHOL
LIBHIKOCTI MOI34a M MOAANBIIOTO BIPOBA/LKEHHS B CHUCTEMY MIATPUMKH MpUHHATTS pimeHs MamuHicta (CIIIIPM) Ta sk
KOMITOHEHTa MOJIeJIi KpUBOJIIHIHHOTO pyXy noizna. Bysau orpumani Hactynni pesyabraTu: Mmoneni MLP (Multilayer Perceptron)
Tta GPR (Gaussian Process Regression) mpoieMOHCTPYBaIy BUCOKY TOYHICTh MPOTHO3YBAHHS K Ha MaJIOMY, TaK i Ha BEITHKOMY
00cs3i manux, npuaomy MLP nokasar kpaiiry MacitaboBaHiCTh MPH 3pOCTaHHI 00CATY HaBYAIbHUX MaHuX, Hixk GPR. BucHoBku.
Ha ocHOBI mpoBeneHOro MOpIiBHSJIBHOTO aHAaNi3y JIOIIJIBHO BHKOpUCTOBYBaTH MLP sk OCHOBHY Mozenb Al BU3HAUYCHHS
kputnuHoi mBuAKocTi B CIIITPM Ta AiarHOCTHKY 3ai3HUYHOTO TPAHCIIOPTY.

KnwdyoBi ciaoBa: KpUTHYHA MIBHIKICTH, KOJMBAHHS PYXOMOTO CKJIajay; OaraTomIapoBHi IEpLENTPOH; rayciBChKa
perpecisi; OIIOpHi BEKTOPH; anpokcuMaliis; Mamnueae HapdanHs; CIITTPM; kpuBoniHiitHuit pyX.
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