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RESEARCH ON THE EFFECTIVENESS OF METHODS OF THE TRAIN CRITICAL 

SPEED CALCULATION 

Abstract .  Topicality. Determining the critical velocity of railway rolling stock is a key step in the design and operation of 

modern trains, as exceeding this velocity leads to sustained lateral oscillations, increased lateral forces at the wheel–rail contact, 

and consequently a higher risk of derailment. Given the deteriorating condition of rolling stock and track infrastructure, reliable 

and efficient prediction of critical velocity based on modern computational methods has become increasingly necessary. The 

subject of study is the effectiveness of machine learning methods for approximating critical velocity under conditions of 

nonlinear dependencies and limited data availability. The purpose of the article is to identify the most effective method for 

subsequent implementation in the Driver Decision Support System (DDSS) and as a component of the train curvilinear motion 

model. The following results were obtained: MLP (Multilayer Perceptron) and GPR (Gaussian Process Regression) models 

demonstrated high prediction accuracy on both small and large datasets; however, MLP exhibited better scalability compared 

to GPR as the training dataset size increased. Conclusion. Based on the comparative analysis conducted, MLP is recommended 

as the primary model for critical velocity estimation within the DDSS and for railway transport diagnostics. 
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Introduction 

Problem relevance. Research into oscillatory 

processes and motion instabilities of railway vehicles 

equipped with conventional solid-axle wheelsets is 

becoming increasingly relevant today, driven by the 

necessity to compensate for the deteriorating condition of 

rolling stock through comprehensive optimization of its 

motion. 

The lowest velocity at which self-sustained lateral 

oscillations (hunting) of the wheelset–bogie system 

emerge is termed the critical velocity. Determining the 

critical velocity is a crucial task in the development and 

design of railway vehicles. If a vehicle operates at 

velocities exceeding the critical velocity, dynamic 

processes triggered by perturbations may fail to damp out 

and instead lead to sustained oscillations of the vehicle. 

Although such motions may be stable in the 

mathematical sense, this behavior is referred to as 

unstable motion. Since severe oscillations can generate 

high lateral forces between the wheel and rail and 

consequently increase the risk of track displacement or 

even derailment – such behavior must be avoided under 

normal operating conditions [1, 2]. In other words, the 

critical velocity imposes an upper bound on the 

permissible operating velocity of a railway vehicle. 

Given the constant deterioration of both railway 

infrastructure and rolling stock, which leads to a dynamic 

reduction in the safe operating speed of trains in real time, 

the ability to quickly and reliably assess critical speed has 

become not just an advantage, but an operational 

necessity to prevent instability caused by fluctuations and 

reduce the risk of derailment. 

Literature review. A substantial body of research 

has been devoted to the issue of critical velocity. 

Exceeding the critical velocity is identified as one of the 

potential causes of train derailments [3]. Studies have 

examined the influence of the track and its underlying 

substructure on the critical velocity value [4-6], as well 

as the possibility of determining this parameter by 

analyzing the effects that motion at critical velocity 

exerts on the track [7, 8]. Two computational approaches 

for critical velocity estimation are commonly discussed: 

the trajectory-following method, which enables 

automated calculation, and the brute-force method. 

However, due to its reliance on the periodicity of 

solutions, the trajectory-following method is inherently 

limited to strictly periodic motion patterns. 

Consequently, the brute-force method proves more 

suitable for critical velocity estimation along complex 

(non-periodic) trajectories [9]. 

Critical velocity computation is a non-trivial task. 

This value depends on a multitude of variables, constant 

parameters, and train motion characteristics many of 

which influence the critical velocity in a highly nonlinear 

manner. Given the inherent complexity of railway 

vehicle dynamics, direct computation of critical velocity 

based on the existing mathematical model of curvilinear 

motion dynamics [10] is impractical. Classical methods 

for estimating critical velocity rely on linearized stability 

analysis or time-domain simulation with incremental 

speed sweeps. However, these approaches assume 

idealized track geometry, neglect degradation effects 

(e.g. wheel profile wear, suspension hysteresis), and 

demand high-fidelity models that are computationally 

prohibitive for real-time implementation. Moreover, they 

often fail to account for stochastic disturbances (e.g., rail 

joints, track irregularities), resulting in over-optimistic 

estimates of stability margins. 

Therefore, this study proposes to approximate the 

critical velocity using appropriate computational tools 

adapted to this specific challenge.  

The purpose of the research is to comparatively 

evaluate three supervised regression methods – 

Multilayer Perceptron (MLP), Gaussian Process 

Regression (GPR), and Support Vector Regression 
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(SVR) – for their ability to approximate the critical 

velocity of railway rolling stock under strongly nonlinear 

parameter dependencies and limited data availability; 

The most efficient method will subsequently be 

employed to develop a critical velocity estimation 

module within the Driver Decision Support System 

(DDSS) and as a component of the train curvilinear 

motion model. 

1. Methods of critical speed calculation

Let's look at a train going through a curved section 

of track with a constant radius of curvature 𝑅 =  500. 

Within the existing model of curved train movement, the 

following dependencies apply to the critical velocity 𝑉𝑐𝑟:

dependence on the conicity of the wheel pair 𝛾, on the 

nominal rolling radius 𝑟0, on the angular stiffness of the

bogie-body connections 𝐶. These dependencies are 

nonlinear and can be conditionally represented as 

follows:  

𝑉𝑐𝑟 ∝  
𝑟0𝐶

√𝛾
. (1) 

From the above relationship, it follows that the 

critical velocity is directly proportional to the nominal 

rolling radius 𝑟0 and the angular stiffness 𝐶, and inversely

proportional to the square root of the wheelset conicity 𝛾. 

Based on these dependencies, approximation of the 

critical velocity is feasible. 

The following tools suitable for critical velocity 

approximation are considered:  

Multilayer Perceptron (MLP) – a class of 

feedforward artificial neural networks consisting of at 

least three layers: input, one or more hidden layers, and 

output. Except for the input layer, all neurons employ a 

nonlinear activation function. 

Gaussian Process Regression (GPR) – a powerful 

and flexible non-parametric regression technique used in 

machine learning and statistics. It is especially useful for 

problems involving continuous data where the 

relationship between input variables and the output is 

unknown or highly complex. GPR is a Bayesian 

approach that quantifies uncertainty in predictions, 

making it valuable for applications such as optimization 

and time-series forecasting. It is based on the concept of 

a Gaussian process – a collection of random variables, 

any finite subset of which follows a joint Gaussian 

distribution. 

Support Vector Regression (SVR) – a variant of 

Support Vector Machines (SVMs) used for regression 

tasks. Its objective is to find a function that best predicts 

a continuous output value for a given input. SVR can 

employ either linear or nonlinear kernels. A linear kernel 

computes the simple dot product of two input vectors, 

whereas a nonlinear kernel (e.g., radial basis function – 

RBF) captures more complex patterns in the data. The 

choice of kernel depends on data characteristics and 

problem complexity. 

2. Experimental analysis of selected methods

To evaluate the performance of the selected

methods in predicting critical velocity, the following 

standard metrics were used: 

𝑅𝑀𝑆𝐸 – Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒  )
2

𝑁
𝑖=1  , (2)

where: 𝑦𝑖
𝑡𝑟𝑢𝑒 – true (reference) critical velocity

from the dataset; 𝑦𝑖
𝑝𝑟𝑒𝑑

 – predicted critical velocity; 𝑁 –

number of samples in the test set; 𝑅2 – Coefficient of

Determination: 

𝑅2 = 1 −
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒−𝑦𝑖
𝑝𝑟𝑒𝑑

)
2

𝑁
𝑖=1

∑ (𝑦𝑖
𝑡𝑟𝑢𝑒−𝑦̅𝑡𝑟𝑢𝑒)

2𝑁
𝑖=1

, (3) 

where 𝑦̅𝑡𝑟𝑢𝑒 is the mean of the true values.

Two datasets were compiled for the analysis: a 

small-scale and a large-scale dataset, containing 

variations of critical velocity corresponding to different 

parameter combinations (𝑦, 𝑟0, 𝐶). These datasets were

used to train the models, all implemented in MATLAB. 

The resulting prediction accuracy graphs are 

presented in Figures 1–6. 

Figures 1–3 show the prediction accuracy of the 

models trained on the small dataset. It can be observed 

that both MLP and GPR successfully approximate the 

critical velocity, with GPR achieving higher accuracy 

than MLP. In contrast, SVR performs poorly on this task. 

Fig. 1. Critical velocity prediction using the MLP model 

trained on a small dataset 
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Fig. 2. Critical velocity prediction using the GPR model 

trained on a small dataset 

Fig. 3. Critical velocity prediction using the SVR model 

trained on a small dataset 

It can be observed that both MLP and GPR 

successfully approximate the critical velocity, with GPR 

achieving higher accuracy than MLP. In contrast, SVR 

performs poorly on this task. 

Figures 4–6 present results for models trained on 

the large dataset: 

Fig. 4. Critical velocity prediction using the MLP model 

trained on a large dataset 

Fig. 5. Critical velocity prediction using the GPR model 

trained on a large dataset 

Fig. 6. Critical velocity prediction using the SVR model 

trained on a large dataset 

On the large dataset, both MLP and GPR remain 

effective, but GPR accuracy decreases with increasing 

data volume, whereas MLP accuracy improves, 

demonstrating better scalability. SVR continues to 

underperform on both small and large datasets. 

Consequently, considering the prospect of further data 

and parameter expansion, the MLP model is the most 

appropriate choice for critical velocity prediction. 

To further validate MLP’s effectiveness, an 

additional comparison was performed for the dependence 

of critical velocity on wheelset conicity γ (with other 

parameters held constant): 
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Fig. 7. Comparison of critical velocity vs. wheelset 

conicity with other parameters held constant 

As shown in Figure 7, MLP approximates the 

critical velocity with an error of 𝑅𝑀𝑆𝐸 =  0.51 𝑘𝑚/ℎ 

indicating a very high level of accuracy. 

Discussion of results 

The comparative analysis of the three machine 

learning models – Multilayer Perceptron (MLP), 

Gaussian Process Regression (GPR), and Support Vector 

Regression (SVR) – reveals distinct performance patterns 

depending on dataset size and underlying parameter 

dependencies. 

All models were trained using a limited number of 

parameter combinations. As shown in Figures 1–3, on the 

small dataset both MLP and GPR successfully captured 

the nonlinear relationship governing critical speed, 

achieving high fidelity with respect to reference values 

derived from the high-fidelity curvilinear motion model 

[8]. Notably, GPR exhibited marginally superior 

accuracy (𝑅2 = 0.9987) attributable to its Bayesian

nature and inherent ability to infer smooth functional 

forms from sparse data. In contrast, SVR (Figure 3) failed 

to generalize: its predictions showed significant 

deviation, particularly at the extremes of the conicity 

range, yielding 𝑅2 = 0.9721 indicating poor adaptability

to the underlying dynamics. 

When scaling to the large dataset, the behavior 

diverged markedly (Figures 4–6). MLP’s performance 

improved: 𝑅2 value rose to 0.9997 confirming its strong

learning capacity and scalability with increasing data 

volume. This aligns with the known strengths of deep 

feedforward networks in approximating high-

dimensional nonlinear mappings when sufficiently 

trained. Conversely, GPR’s accuracy degraded. SVR 

remained consistently unreliable across both dataset 

sizes. In summary, the results demonstrate that: MLP 

offers the best trade-off between accuracy, robustness, 

and scalability; GPR is suitable for small-data 

prototyping but becomes inefficient and less accurate as 

data grows; SVR is unsuitable for this specific regression 

task under the tested configurations. 

Conclusions 

Three supervised regression methods – Multilayer 

Perceptron (MLP), Gaussian Process Regression (GPR), 

and Support Vector Regression (SVR) – were 

comparatively evaluated for their ability to approximate 

the critical velocity of railway rolling stock under 

strongly nonlinear parameter dependencies and limited 

data availability; Appropriate metrics were selected to 

evaluate models performance, and a comparative 

assessment of their effectiveness and accuracy was 

conducted. The results show that both MLP and GPR 

achieve high prediction accuracy on both small and large 

datasets, with MLP demonstrating superior scalability 

and improved accuracy as the dataset size increases, 

whereas GPR performance degrades under the same 

conditions. In contrast, SVR exhibits insufficient 

prediction accuracy across all dataset sizes. 

A further experiment involved isolating the 

dependence of critical speed on wheelset conicity 𝛾 under 

fixed 𝑟0 and 𝐶 confirms not only global approximation

capability but also local sensitivity preservation – a 

critical requirement for real-time safety systems such as 

the Driver Decision Support System (DDSS) 

Consequently, the MLP model is selected for 

further implementation as a core component of the 

critical velocity estimation module within the Driver 

Decision Support System (DDSS) and as part of the train 

curvilinear motion model. 
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ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ МЕТОДІВ ОБЧИСЛЕННЯ КРИТИЧНОЇ ШВИДКОСТІ РУХУ ПОЇЗДА 

О. С. Євтушенко, О. Ю. Заковоротний 

Анотація .  Актуальність. Визначення критичної швидкості залізничного рухомого складу є ключовим етапом 

при проектуванні та експлуатації сучасних поїздів, оскільки перевищення цієї швидкості призводить до стійких 

поперечних коливань, зростання бічних сил у контакті колеса з рейкою і, як наслідок, збільшення ризику сходу рухомого 

складу з колії. У зв’язку з погіршенням стану рухомих складів і шляхового господарства, стає необхідним забезпечення 

надійного та ефективного прогнозування критичної швидкості на основі сучасних обчислювальних методів. Предметом 

дослідження є ефективність методів машинного навчання для апроксимації критичної швидкості в умовах нелінійних 

залежностей та обмеженого обсягу даних. Метою статті є відбір найбільш ефективного методу обчислення критичної 

швидкості поїзда для подальшого впровадження в систему підтримки прийняття рішень машиніста (СППРМ) та як 

компонента моделі криволінійного руху поїзда. Були отримані наступні результати: моделі MLP (Multilayer Perceptron) 

та GPR (Gaussian Process Regression) продемонстрували високу точність прогнозування як на малому, так і на великому 

обсязі даних, причому MLP показав кращу масштабованість при зростанні обсягу навчальних даних, ніж GPR. Висновки. 

На основі проведеного порівняльного аналізу доцільно використовувати MLP як основну модель для визначення 

критичної швидкості в СППРМ та діагностики залізничного транспорту. 

Ключові  слова :  критична швидкість; коливання рухомого складу; багатошаровий перцептрон; гаусівська 

регресія; опорні вектори; апроксимація; машинне навчання; СППРМ; криволінійний рух. 
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