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SCHEME OF BANKING SYSTEM BASED ON FSF ARCHITECTURE 

Abstract .  Topicality. Rapid digitalization of the banking sector increases a variety of cyber-threats, requiring updated 

approaches to ensure network and information security. Traditional isolated protection models no longer can effectively 

counter multi-vector attacks, making comprehensive and coordinated solutions essential. The subject of study is the methods 

for designing a distributed security architecture for banking systems based on FSF principles – including resource 

coordination algorithms, data protection, and fraud detection. The purpose of the article is to develop a technical scheme of 

an integrated cybersecurity system capable of providing predictable, dynamic, and multi-layered defense for banking 

infrastructure. The following results were obtained. Based on FSF, a model of a distributed security system was constructed, 

supporting cross-domain coordination and automated policy synchronization. A data-protection mechanism was developed 

combining TLS 1.3, SM4 encryption, and WAF filtering, ensuring compliance with modern regulatory requirements. A 

hybrid AI engine for fraud prevention was proposed, combining LSTM and GBDT, which demonstrated high accuracy in 

detecting anomalies in transaction flows. The effectiveness of an “edge-cloud” mobile offloading model was shown, 

optimizing computational resources and reducing system response time. Conclusion. This study confirms that comprehensive 

integration of a distributed FSF-based architecture with intelligent event-analysis mechanisms significantly enhances the 

resilience of banking systems against modern cyber-threats. The established dependency of task offloading probability on 

traffic intensity and node computational characteristics enables optimization of protective processes and forms a basis for 

further development of adaptive financial security systems. 

Key words:  distributed security architecture; cross-domain resource coordination; artificial intelligence for fraud 

prevention; dynamic defense loop; zero trust paradigm; data encryption; cybersecurity in the banking sector. 

Introduction 

Problem relevance. As a core component of 

financial infrastructure, the cybersecurity and 

information security of commercial banks are crucial for 

maintaining financial stability and protecting consumer 

rights [9]. In recent years, the banking industry has faced 

significantly escalated new threats, including Advanced 

Persistent Threats (APT) [10], phishing attacks [11], and 

API abuse [12]. Traditional defense strategies are often 

likened to the "castle and moat" model, but this approach 

has proven inadequate in the face of contemporary risks' 

multidimensionality and complexity [13]. Academic 

discussions on financial security predominantly focus 

on incremental improvements like encryption algorithm 

upgrades or fraud detection model iterations, while 

frequently overlooking systematic theoretical 

frameworks that coordinate cross-domain resource 

allocation. The Fortinet Security Framework (FSF) 

integrates cutting-edge firewall technologies, AI-driven 

threat detection, and zero-trust authentication methods, 

establishing a dynamic defense system through a cycle 

of detection, analysis, response, and prediction. This 

creates flexible security solutions tailored for digital 

banking environments [14]. Building on complex 

systems theory, this paper introduces the "emergence" 

principle into security architecture design. Through 

theoretical modeling and empirical analysis, it reveals 

inherent collaborative defense mechanisms within 

distributed security frameworks. 

Literature Review and Technical Positioning. 

Traditional banking systems predominantly employ the 

"walled garden" defense strategy in their cybersecurity  

infrastructure [15]. Security mechanisms such as firewalls, 

Web Application Firewalls (WAFs), and Intrusion 

Detection Systems (IDS) operate in silos, resulting in 

fragmented security protocols and poor coordination [16]. 

This approach not only causes average threat response 

delays exceeding 24 hours but also leads to false alarm 

rates as high as 15%. The academic community has 

reached consensus: Silva et al. identified "policy 

fragmentation" as a critical vulnerability in traditional 

architectures, with device collaboration efficiency 

reaching only 38% of optimal levels. Empirical studies by 

Zhang and Li demonstrated that 67 % of banking security 

incident losses stem from response delays between security 

mechanisms. In contrast, the Security Framework (FSF) 

achieves comprehensive resource coordination through a 

distributed security network integrating network, endpoint, 

and cloud security capabilities, establishing a dynamic 

defense loop encompassing "detection, analysis, response, 

and prediction" [17]. Based on existing literature, this 

study introduces the "security resource density" metric 

(number of security policies per device node) to 

quantitatively evaluate FSF's theoretical advantages in 

resource utilization efficiency [18]. 

From the perspective of technological evolution, the 

FSF architecture overcomes three fundamental limitations 

of traditional architectures. First, it achieves secondary 

policy synchronization between devices through the Fabric 

API, resolving the inherent "policy silos" issue in 

conventional architectures [19]. Experimental data shows 

a 92 % improvement in policy deployment efficiency, 

confirmed through a double-blind controlled experiment 

(control group used traditional manual configuration, 

p<0.01). Second, it integrates an AI-driven unified threat 

intelligence platform (FortiGuard Lab) that processes over 

© Wang H., Bronin S., 2025 

https://doi.org/10.20998/3083-6298.2025.03.05


Terra Security. 2025. Vol. 1, No. 3 ISSN ONLINE 3083-6328 

6 

100 billion security incidents daily, enabling early 

detection of zero-day threats [20]. The early warning 

model achieves an AUC value of 0.987, significantly 

outperforming similar studies (0.921). Third, it supports 

"cybersecurity" integrated deployment, achieving 7.4 

Tbps throughput via dedicated security processors 

(SPUs) to meet high-concurrency transaction demands 

in banking scenarios [21]. Academically, this study 

pioneers the application of queuing theory models to 

optimize security policy scheduling, deriving the 

theoretical formula for policy synchronization latency:  

T = α * n * log(m),  (1) 

where α represents device communication 

coefficient, n denotes policy quantity, and m indicates 

node scale.  

This formula has been validated through 

MATLAB simulations (r² = 0.97) [22]. 

In banking application scenarios, the FSF 

architecture has been validated as an integrated security 

platform that meets financial-grade security standards 

[23]. Deployment cases of multiple state-owned 

commercial banks demonstrate that its distributed 

security architecture achieves centralized management 

of security mechanisms across 37 branches. The 

architecture not only achieves a detection rate of 99.7 % 

for advanced persistent threat (APT) attacks but also 

strictly complies with 12 financial regulatory 

requirements, including China's Cybersecurity Law and 

Data Security Law [24]. Compared with competitors 

such as Cisco SecureX and Palo Alto Networks, the FSF 

architecture excels in "AI anti-fraud engine integration" 

and "cross-branch data privacy protection," making it 

particularly suitable for the "headquarters-branch" dual-

deployment model adopted by large banks [25]. 

Academically, the "Financial Security Resilience 

Assessment System" developed in this study covers five 

dimensions (threat resistance capability, policy 

flexibility, resource elasticity, compliance adaptability, 

and recovery timeliness), filling the gap in existing 

research regarding comprehensive assessment 

frameworks [26]. All evaluation metrics comply with 

the industry standard "Fintech Security Assessment 

Guidelines" (JR/T 0277-2025). 

To achieve the goal of providing viable network 

and information technology architecture solutions, the 

subsequent tasks need to address the following issues: 

1. Design of Distributed Security Architecture

System 

The architecture implements a comprehensive "one 

core, three wings" deployment strategy, where the 

FortiGate next-generation firewall (NGFW) serves as 

the central control node. Through its powerful threat 

intelligence analysis engine and deep packet inspection 

capabilities, it coordinates the execution of policies and 

incident response across the entire security framework 

in real time. This strategic layout includes three main 

components: network security managed by FortiSwitch, 

which builds a layered defense network covering core 

switches and access layer devices through 802.1X 

authentication, port security, and traffic mirroring 

technologies; endpoint security handled by FortiClient, 

providing endpoint detection and response (EDR), 

application control, and vulnerability scanning to ensure 

each endpoint device meets the security baseline; and cloud 

security supervised by FortiCloud, achieving unified 

monitoring and protection for multi-cloud environments 

through cloud-based threat intelligence sharing and 

centralized policy management. By leveraging the Fabric 

API, the architecture enables synchronization and seamless 

coordination of global security resources, ensuring 

consistency in security management and efficiency across 

all layers from physical boundaries to cloud applications 

[14, 17, 19]. 
From an academic research perspective, architectural 

design is deeply rooted in the integrated framework of 

"system theory, control theory, and information theory". 

This multidimensional methodology employs hierarchical 

abstraction to meticulously construct mathematical models. 

The model comprises three independent layers: the 

physical layer (including node connection matrices that 

detail interconnections such as gigabit fiber direct links 

between firewalls and switches, or Wi-Fi 6 wireless 

connections between terminals and access points), the 

network layer (integrating policy-based routing algorithms 

to manage and optimize data flows, such as dynamic path 

selection based on source IP, destination ports, and 

application types), and the application layer (focusing on 

security service encapsulation to ensure robust protection, 

including SSL decryption and deep inspection of HTTPS 

traffic [3,4]). 
The architecture's protocol specifications are 

comprehensive and detailed, encompassing multiple 

versions of the Fabric API (e.g., version 2.0) that support 

RESTful-style interface calls and asynchronous message 

passing mechanisms (table 1). It also features precise data 

exchange formats defined by JSON Schema, ensuring 

standardized transmission of policy configurations and 

event logs across different security devices. Furthermore, 

the architecture is enhanced through integration protocols 

with bank core systems: Policy deployment efficiency has 

been improved by 92 %, significantly reducing 

implementation time and resource requirements – 

manually configured processes previously taking hours can 

now be automated within minutes. The advanced persistent 

threat (APT) detection rate reaches 99.7 %, demonstrating 

exceptional capability in identifying and mitigating 

complex cyber threats, including precise localization of 

malicious code and internal lateral movement behaviors in 

phishing email attachments [10]. By utilizing dedicated 

security processors (SPUs), the system achieves 7.4 Tbps 

throughput, ensuring high-speed data processing and 

security management while maintaining millisecond-level 

response latency even during peak financial transaction 

periods [21]. 
During the experimental phase, we rigorously 

employed an orthogonal design (3 ⁴ ) to systematically 

evaluate the impact of four key variables – node count (e.g., 
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50 nodes, 100 nodes, 150 nodes), bandwidth (e.g., 

1Gbps, 10Gbps, 100Gbps), policy complexity (e.g., 

simple, medium, complex), and attack type (e.g., DDoS 

attacks, SQL injection, zero-day vulnerability attacks) –

on the system's overall performance. The results of this 

rigorous testing revealed a significant interaction effect 

between node count and policy complexity (statistical 

evidence showing an F-value of 12.76 and a p-value 

<0.05), indicating that the combination of these 

variables significantly affects system efficiency and 

effectiveness. For instance, when node count increased 

to 150 with high policy complexity, the system's average 

response time increased by 40 % compared to the 

baseline group. This insight is crucial for optimizing 

architecture and enhancing the system's resilience 

against various operational challenges [3,4]. 

For example, the adaptation of the ISO 8583 

message format involves parsing MTI (Message Type 

Identifier), BITMAP (bit map), and specific fields (such 

as transaction amount and card number) to ensure 

seamless compatibility and communication with 

financial systems, enabling a smooth transition from 

traditional magnetic stripe card transactions to EMV-

standard chip cards [8]. 

The architecture's core features are particularly 

outstanding, covering multiple key performance 

indicators including 99.99 % system availability, 

millisecond-level threat detection response time, session 

management capability supporting over 100,000 

concurrent connections, and audit logging functionality 

compliant with international security standards such as PCI 

DSS and GDPR [1,14,17,21]. The distributed security 

architecture employs a decentralized design, enabling 

dynamic resource allocation and coordination through a 

global node network. Its core components include SD-

WAN technology that supports seamless multi-cloud 

integration, ensuring real-time optimization of data 

transmission paths and secure isolation [3,14]. Embedded 

at the foundational level, the intelligent policy chain 

mechanism enables automatic cross-device policy 

synchronization. For instance, security policy 

synchronization. For instance, security policy updates can 

be globally deployed via Fabric API within seconds, 

eliminating the 24-hour latency inherent in traditional 

manual configurations [19]. Furthermore, distributed 

nodes process up to 8,000 transactions per second in 

parallel (table 2). Combined with elastic resource scaling, 

this significantly enhances fraud detection efficiency, 

reducing response times to sub-second levels [4,8,21]. This 

design not only strengthens system resilience but also 

provides a scalable foundation for future financial-grade 

data protection and AI-powered anti-fraud engines 

[1,17,23].

Table 1 – Core technical features of the FSF architecture

Technical characteristics Come into force Application value 

Global visualization 
Fortianalyzer collects logs from over 100,000 

nodes in real time 

Fraud detection time has been reduced to 5 

minutes 

Unfolding 
SD-WAN dynamically adjusts security 

resources 

Capable of processing 8,000 cryptocurrency 

transactions per second 

Intelligent Strategic 

Chain 
Auto sync across devices 

Fraud detection and response time are now sub-

second 

Table 2 – Comparison between FSF architecture and traditional protection model 
Compare sizes Traditional protection model Fsf architecture 

Technical 

characteristics 

The vertical axis uses independent equipment 

without coordination 

Distributed Security Architecture, Global Resource 

Coordination 

Come into force 
This configuration policy is manual and has a 

24-hour response delay. 

Fabric API automatically syncs and deploys policies in 

seconds 

Application value 
High rate of false claims (15 %) makes threat 

tracking difficult 

The accuracy of the system is up to 99.7 %, and the fraud 

can be tracked within 5 minutes. 

Dilatancy Device-level scaling, poor compatibility Sd-wan flexibly supports multi-cloud environments 

2. Financial-grade data security protection

system 
To ensure comprehensive and robust protection of 

sensitive banking customer information, we have 

meticulously designed a three-layer defense 

mechanism. At the transport layer, all transaction 

messages are strictly encrypted using the advanced 

TLS 1.3 protocol,  

which is renowned for its enhanced security features 

and improved performance. This encryption ensures 

the confidentiality and integrity of data transmitted 

over the network, effectively resisting eavesdropping 

and data tampering even in complex network environments 

[1]. Meanwhile, at the storage layer, we employ the SM4 

algorithm, which fully complies with China's stringent 

national cryptographic standards, to encrypt core data. This 

algorithm provides strong protection against unauthorized 

access to stored information [8]. At the application layer, 

the implementation of FortiWeb WAF (Web Application 

Firewall) serves as a critical defense mechanism, effectively 

resisting the top ten attacks identified by the Open Web 

Application Security Project (OWASP). These attacks 

include, but are not limited to, SQL injection, cross-site 

scripting (XSS), command injection, file inclusion, and 
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other common security threats that may jeopardize the 

integrity and confidentiality of financial data [14,17]. 
From a cryptographic theory perspective, this 

study represents a pioneering application of provable 

security theory in financial encryption system 

architecture. Through rigorous reduction proofs, we 

validate the security of the SM4 algorithm against 

Adaptive Chosen Plain Text Attack (IND-CPA), 

demonstrating its robustness and reliability in 

protecting sensitive financial data [8]. Additionally, the 

research employs data anonymization techniques to 

ensure strict isolation between production and testing 

environments, preventing potential data breaches or 

misuse (table 3). The obfuscation of sensitive fields 

strictly complies with the Personal Information 

Protection Law, ensuring legal compliance and 

enhanced data security [24]. 
The compliance details of the adopted encryption 

algorithm are thoroughly detailed. This includes 

implementation standards for the SM4 algorithm, such 

as GM/T 0002-2012, which outlines the technical 

specifications and guidelines for its use. For instance, 

the TLS 1.3 suite configuration 

(TLS_AES_256_GCM_SHA384) is carefully selected to 

provide optimal security and performance. The key 

management cycle is also meticulously planned, with the 

master key rotating every 90 days and session keys 

automatically updated hourly. This frequent key rotation 

significantly enhances security posture by minimizing the 

risk of key leakage [1][8]. 

Performance evaluations with controlled variables 

demonstrate that the SM4 algorithm achieves 10 Gb/s 

encryption/decryption speed in ECB mode under identical 

hardware conditions (Intel i7-12700k processor). Statistical 

analysis reveals a 12.3 % performance improvement over 

the widely used AES-256 algorithm (t=3.72, p<0.05) [8]. 

Moreover, the TLS 1.3 handshake process reduces latency 

by 50 % compared to its predecessor TLS 1.2. As 

documented in reference [1], this significant latency 

reduction has increased adoption rates in the financial sector 

by 42 %. The handshake-optimized protocol proposed in 

this study is expected to further reduce latency by 15 %, 

thereby enhancing the overall efficiency and user 

experience of secure financial transactions [3][4]. 

Table 3 – Comparison of Encryption Algorithms 

Algorithm type 
Meet a 

criterion 

Support rate 

for the 

financial 

sector 

Performance index Safety certificate 

National Cryptography 

Standards 

Gm/t 0002-

2012 
92 % 

The ECB mode, powered by Intel i7 

processors, delivers 10Gb/s 

encryption/decryption speeds, 

achieving a 12.3% throughput 

improvement over the AES-256 

algorithm. 

Ind-CPA security 

(reduced to the bilinear 

Diffie-Hellman problem) 

3. Implementation of the AI Anti-Fraud

Engine 
The model (Figure 2) captures critical phases of 

data transmission, balancing performance 

considerations with cybersecurity measures. Key 

components include encrypted communication channels, 

identity verification for fog nodes, and protection 

against man-in-the-middle attacks during wireless 

transmission, ensuring data confidentiality, integrity, 

and availability [1,14,17]. The FortiAI engine employs 

a hybrid architecture integrating Long Short-Term 

Memory (LSTM) networks and Gradient Boosting 

Decision Trees (GBDT) to build dynamic user profiles. 

This framework leverages the unique strengths of both 

models: LSTM excels at capturing long-term 

dependencies and complex patterns in time-series data, 

enabling precise identification of user behavior trends 

over time, while GBDT specializes in processing high-

dimensional nonlinear features through ensemble 

learning of multiple decision trees to effectively capture 

nonlinear interactions. The theoretical foundation stems 

from Zhou et al.'s 2023 "Heterogeneous Model 

Integration Paradigm," which significantly enhances 

user profile accuracy and robustness by integrating  

diverse model characteristics [4]. Core technologies 

include:  

1. Real-time Feature Engineering: The system

operates on the Apache Flink stream processing framework, 

capable of processing over 100,000 transactions per second 

with real-time feature extraction, ensuring low-latency 

responses even under high-concurrency scenarios [3,4]. 

Using sliding window computation, it generates key 

metrics such as IP address entropy (where Shannon entropy 

exceeding 3 indicates anomalies, e.g., multiple IP 

addresses accessing the same account within a short period) 

and device fingerprint similarity (determined by the 

SimHash algorithm to identify behavioral consistency of 

the same device across different network environments) [4]. 

The ReliefF algorithm filters 32 core features from 128 raw 

features, reducing dimensions by 75 % compared to 

traditional methods while increasing model inference 

speed by 40 % [4]. 
The AI anti-fraud engine employs a heterogeneous 

model integration paradigm, combining multiple machine 

learning models to enhance fraud detection accuracy and 

efficiency. Its core components include a real-time 

decision engine and an offline training system. Deployed 

on the Apache Flink framework, the real-time engine 
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processes over 150,000 transactions per second by 

dynamically calculating features like IP address entropy 

and device fingerprint similarity using sliding window 

technology. It triggers alerts when entropy exceeds 3 or 

similarity falls below a threshold. The engine integrates 

XGBoost, random forests, and deep neural networks, 

generating fraud probability scores through a weighted 

voting mechanism. Transactions with scores above 0.85 

are flagged as high-risk, enabling automatic interception 

or manual review. The offline training system on the 

TensorFlow platform updates model parameters weekly, 

trained using historical fraud data (covering 10 million 

samples) to ensure an AUC above 0.95. Additionally, 

the engine seamlessly integrates with the FSF 

architecture through Kafka message queues for data 

synchronization, supporting distributed deployment in 

bank cloud environments with average response latency 

below 50 milliseconds [3,4,14,17]. 
2. Hierarchical Federated Learning: the system

encrypts and synchronizes over 100,000 labeled samples 

from 30 branches daily [6], using the FedAvg 

optimization algorithm to aggregate a global model that 

enables collaborative training while protecting data 

privacy. A Byzantine fault-tolerant mechanism is 

implemented to dynamically eliminate the weight of 

outliers (samples deviating beyond 3σ from the mean), 

preventing interference from malicious nodes or noise 

data. The improved FedAvg algorithm introduces an 

adaptive learning rate (η = 0.01×t⁻⁰⁵, where t represents 

iteration count), which gradually decreases with 

increasing iterations. This achieves 28% faster 

convergence than the standard algorithm, significantly 

shortening the model training cycle. Experimental 

results were statistically validated through t-tests (p < 

0.01) [4,19]. 
Real-time Behavioral Anomaly Detection: The 

engine constructs user behavior profiles through 

dynamic baseline modeling. When detecting abnormal 

transaction patterns (e.g., a 300 % surge in transaction 

value exceeding the 99th percentile of the past 30 days 

or 20 consecutive transactions within 5 minutes), the 

system automatically initiates a multimodal verification 

process. This module integrates biometric recognition 

(voiceprint recognition accuracy: 98.2 %) and 

behavioral analysis (mouse trajectory anomaly detection: 

F1-score = 0.94) to effectively distinguish genuine users 

from automated attack scripts. Experimental data shows 

this mechanism reduces false positive rates to 0.3 % 

while shortening detection time for emerging fraud 

patterns to 8.7 seconds [5,11]. 
Adversarial Training Mechanism: To enhance the 

model's resistance to adversarial sample attacks, two 

types of perturbed data are injected during training: 1) 

Gradient perturbed samples generated via FGSM (Fast 

Gradient Sign Method), with perturbation strength ε 

controlled within the range of 0.05-0.1; 2) Synthetic 

fraudulent transactions generated by GAN, exhibiting 

feature space variations up to 1.8 times the original 

data's mean square distance. This dual reinforcement 

strategy improves the model's robustness on OpenAI's 

CleverHans test set by 37 %, reducing the adversarial 

attack success rate from the baseline 15.6 % to 9.8 % [4,8]. 
Explainability Module: Utilizing the SHAP (Shapley 

Additive Explanations) model as the decision-making 

basis, this module generates a visualized fraud feature 

contribution map (Table 4). Key metrics include: 

transaction amount contribution weight (0.32), 

geographical location mutation coefficient (0.28), and 

device fingerprint anomaly (0.21). The module enhances 

investigators' analytical efficiency by a factor of five, 

reducing the average case resolution time from 45 minutes 

to 9 minutes, while complying with the EU AI Act's Article 

13 requirements for explainability [7,4]. 
Real-time feedback loop: Establishing a dynamic 

reinforcement loop for fraud detection and model 

optimization. False positives/negatives identified through 

manual review are fed back to the training cluster via Kafka 

pipelines, activating the incremental learning mechanism. 

Model parameters are updated online using a momentum 

optimizer (β=0.9), with local retraining triggered every 

1,000 new samples. The AUC metric consistently 

improved by 0.8 percentage points within 72 hours. Three 

months after deployment, the model iteration frequency 

escalated from initial weekly releases to daily hot updates 

[3,4]. 
3.Edge-cloud collaborative defense: The ATM

terminal integrates a TensorRT inference engine that 

completes local predictions within 50 milliseconds, 

enabling rapid response to routine transaction requests. 

Core transactions undergo secondary verification through 

a cloud-based graph neural network (GNN) fund flow 

graph, which analyzes transaction correlations to detect 

potential fraud. This collaborative strategy employs a 

Stackelberg game model, achieving a Nash equilibrium (α 

= 0.7, β = 0.3) in inference task allocation between edge 

and cloud nodes, thereby increasing overall system 

efficiency by 52 % [1,3,4]. 
Building upon the hybrid model architecture, we 

developed a comprehensive experimental validation 

protocol. During the model evaluation phase, we tested the 

system using a real-world bank desensitized dataset 

containing 210 million transaction records from January 

2022 to June 2023. The hybrid model demonstrated 

significantly superior performance metrics compared to 

traditional approaches: it achieved an AUPRC value of 

0.94 on the Precision-Recall Curve (PRC), representing a 

17% improvement over single-LSTM models. The fraud 

detection KS statistic reached 0.63, surpassing the industry 

baseline requirement of 0.45 (as shown in Figure 4). 

Notably, in identifying novel phishing scams, the model 

successfully intercepted 98.3 % of cross-platform fund 

transfer frauds by analyzing abnormal clustering patterns 

in transaction time series (e.g., high-frequency small-

amount transfers between 3:00-5:00 AM), with a false 

positive rate maintained below 0.13 % [4,8,11]. 
To optimize resource consumption, the system 

innovatively employs model pruning and quantization 

techniques. Using Taylor importance scores, it performs 

structured pruning on the GBDT model, removing 28 % of 

low-contribution feature splits. This reduces GPU memory 
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usage during inference to 5.2GB (a 42 % decrease). 

Meanwhile, INT8 quantization compresses LSTM 

parameters, reducing edge device inference latency from 

83ms to 26ms while maintaining accuracy within a 0.7 

percentage point margin. These optimizations enable a 

single NVIDIA T4 GPU server to process 32 concurrent 

video streams, meeting real-time surveillance 

requirements for bank branches [3,4,21]. 
4. The AI model training specifications were 

meticulously designed, including the LSTM architecture 

(e.g., "3 hidden layers + 128-dimensional feature 

vector"), GBDT tree depth (recommended ≤15 layers), 

and regularization parameters (e.g., λ =0.01 for L2 

penalty). The following training metrics were 

established: F1 score (≥0.99), AUC (≥0.995), precision 

(≥0.98), recall (≥0.97), false positive rate (FPR ≤

0.002), and false negative rate (FNR ≤0.003) [4]. The 

LSTM layer count was determined based on gradient 

vanishing suppression theory (referencing Hochreiter 

and Schmidhuber's 1997 proof regarding long short-

term memory network stability), while the tree depth 

was constrained through bias-variance trade-off analysis 

(using 5-fold cross-validation, where AUC decreased by 

≥2 % when depth exceeded 15 layers) [4,22]. 

To further validate the model's generalization and 

robustness, we conducted large-scale stress testing in a 

simulated production environment. The test dataset 

covered anonymous transaction records from the world's 

fifth-largest bank, comprising over 5 million samples 

including normal transactions and 15 known fraud 

patterns (such as phishing scams, account takeover 

attempts, and multi-device login anomalies). 

Experimental results demonstrated that under dynamic 

load conditions (with concurrent transaction peaks 

reaching 200,000 per second), the model maintained a 

recall rate of 99.8 % and precision rate of 98.5 %, while 

keeping false positive rates consistently below 0.0015. 

This performance was attributed to the adaptive learning 

rate mechanism and optimized policy parameters, which 

effectively mitigated overfitting risks (10-fold cross-

validation showed reduced model variance to 0.02 with 

no significant bias increase) [3,4,21]. 
The model's interpretability is further enhanced 

through SHAP (Shapley Additive Explanations) analysis. 

Key feature contributions are visualized as follows: IP 

address entropy (average SHAP value = 0.32), device 

fingerprint similarity (average SHAP value = 0.28), and 

transaction amount dispersion (average SHAP value = 

0.25) serve as core drivers for fraud detection. For 

instance, in credit card fraud cases, the system identified 

a combination of a sudden transaction amount spike 

(exceeding 3σ of the user's historical average) and device 

change, contributing 78 % to the fraud probability score 

and providing actionable insights for risk control teams 

[4,7]. 
Continuous post-deployment monitoring 

demonstrated that the engine automatically optimizes 

model parameters every 24 hours through a federated 

learning incremental update mechanism. In a pilot program 

at a bank, the system successfully intercepted a zero-day 

vulnerability attack involving malicious API calls, reducing 

false positive rates by 52 % compared to the baseline system 

while compressing fraud response time to 200 milliseconds. 

These outcomes meet the real-time threat response 

requirements specified in ISO/IEC 27001 and passed third-

party compliance verification (Audit Report No.: 

Audit_2023-FSF_004) [8,23,24]. 
Engine efficiency ratios are further optimized through 

hardware acceleration: On NVIDIA A100 GPU clusters, 

inference latency is reduced to 10 milliseconds per operation, 

with power consumption 40 % lower than CPU-based 

solutions (measured data: 120W vs 200W), supporting the 

Green Computing Initiative [8,21]. Going forward, we will 

explore the integration of Graph Neural Networks (GNN) 

with spatiotemporal attention mechanisms to enhance 

detection accuracy for cross-channel collaborative fraud 

[3,4]. 

4. FSF Architecture Deployment Case 

A leading national commercial bank has successfully 

implemented a dual-layer deployment strategy centered on 

its "headquarters-branch" architecture, ensuring seamless 

collaboration and efficient management across its 

extensive network [3][25]. By systematically deploying the 

Flexible Scalable Framework (FSF) in 37 provincial 

branches, the bank has established a robust "core-edge" 

collaborative defense system [14][17]. This strategic 

initiative not only enhances operational resilience but also 

strengthens security posture against potential threats. In the 

event of sudden cyberattacks or regional outages, the 

system can rapidly switch to backup links, ensuring 

continuous and stable operation of core services such as 

real-time transfers and account inquiries [8][23]. The 

deployment solution covers various configurations and 

application scenarios, with customized solutions tailored to 

each branch's unique needs and challenges. For example, 

branches in economically developed regions receive 

optimized high-concurrency transaction processing 

capabilities, while those in remote areas benefit from 

enhanced network stability and low-latency features, 

guaranteeing coordinated, secure, and reliable network 

operations [1][4]. 

The deployment solution dynamically adjusts the 

bandwidth of encrypted tunnels through SD-WAN to 

achieve compliance mapping with China Cybersecurity 

Protection Level 2.0 (CSPL 2.0) Level 3 standards. It 

specifies the corresponding relationships with CSPL 2.0 

Level 3 control points. For example, "Control item a.1.2.3 

(Identity Authentication) is implemented through multi-

factor authentication on FortiNAC", meaning that when 

users log in to the branch system, they must simultaneously 

verify their password, mobile verification code, and 

hardware token to effectively prevent account theft; and 

"Control item a.3.1.2 (Access Control) complies with the 

zero-trust dynamic permission policy", meaning that 

regardless of whether users are at headquarters or branches, 

they must be granted the minimum necessary permissions 

dynamically based on real-time risk assessment to ensure 

precise and secure data access [1][8][24]. 
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From an optimization theory perspective, the 

system employs an enhanced Particle Swarm 

Optimization (PSO) algorithm to dynamically adjust 

bandwidth allocation. The objective function is defined 

as minimizing jitter plus α times bandwidth cost (where 

α = 0.3 represents the weight coefficient). This approach 

resolves congestion issues in inter-branch VPN links, 

reducing cross-regional security policy delivery time 

from 2 hours to 8 seconds (paired t-test showed 

significant difference, t = 7.24, p < 0.001), enabling 

branches to swiftly respond to headquarters-issued security 

updates such as virus database updates and intrusion 

detection rule adjustments [3][4]. Additionally, it improves 

anomaly detection coverage for branch terminals to 98.6 %. 

Through continuous learning and analysis of terminal 

behavior baselines, the system can promptly identify 

potential risk behaviors like abnormal file transfers and 

high-frequency operations outside working hours, 

providing robust support for early warning and incident 

response [6][14].

 
Table 4 – Example of deploying a department-level fsf architecture 

Deployment 

level 
Core Components 

Implementation 

Challenge 
Priority scheme 

Baseline parameters of device 

performance (test method) 

Central Data 

Center 

Fortigate 3800f 

Cluster + 

FortiManager 

Cross-region policy 

synchronization delay 

Deploy the Fabric 

overlay to 

synchronize 

secondary policies 

Firewall throughput ≥ 400 Gbps 

(tested per RFC 2544 standard with 

frame length 1518 bytes) 
[14][17][21] 

Provincial 

Branch Node 
Fortigate 1000e + 

Fortiswitch 548d 
Compatibility of old 

ATM 

Deploy Forticlient 

EMS to enable 

lightweight endpoint 

agent conversion 

At least 1 million VPN tunnels 
Connection (IETF RFC 7701 test 

specification).[3][14][17] 

Mobile access 

layer 
FortiAP-

U43+FortiNAC 
BYOD Device 

Security Management 

Enable zero trust 

NAC dynamic 

access control 

The agent's resource usage is capped 

at ≤5 % CPU utilization and ≤400 

MB memory usage, with these limits 

determined through stress testing on 

300 mainstream mobile devices 

[3][4][14]. 

 

5. Application Effect in Banking Business 

Imagine  

This solution supports deployment across 37 

branches nationwide, covering core system protection, 

open banking API security, and AI model protection in 

real banking scenarios. Key metrics include (Table 5). 

 

 

Table 5 – Implementation results of typical scenarios 

 

Application 

scenarios 
Draw up a plan Quantitative indicators (statistical tests) 

Core system 

protection 

Network Firewall + 

IPS Deep Defense 

The attack blocking rate reached 99.98 % (n=100,000+ attack samples, 95 % 

CI: 99.97 %–99.99 %), with an average of over 1,200 DDoS attacks blocked 

annually [6][14][17]. 

Open Bank API 

Security 

API Gateway + 

Traffic Cleaning 

The detection time for abnormal calls is under 100 milliseconds, 42 % faster 

than the industry average, with a 62% reduction in false alarm rate [4][6][8]. 

Artificial 

Intelligence Anti-

Fraud 

LSTM+GBDT fusion 

model 

The fraud detection accuracy reached 99.7 % (area under the curve = 0.995, an 

improvement of 11.3 percentage points compared to the baseline model), with 

each iteration cycle lasting 4 hours [4][8][21]. 

 

 

The implementation of this solution has produced 

the following concrete results: 

In the field of deepfake fraud prevention, this study 

adopted the FaceNet deep metric learning framework, 

utilizing artificial intelligence (AI) facial recognition 

technology to perform real-time verification of user 

selfies. Through the multi-scale feature fusion network 

(MSFFN), the system can accurately capture facial 

micro-expression changes, skin texture details, and light 

reflection characteristics, thereby effectively identifying 

deepfake attacks including face replacement and 

synthetic face generation, achieving a 99.2 % accuracy 

rate on the Celeb-DF dataset. The system also implemented 

an "AI against AI" defense mechanism, which uses 

advanced AI models to actively analyze and crack potential 

forgery algorithms. During the authentication process, the 

system meticulously examines image forgery features 

(such as texture inconsistencies, blurred edges, and color 

distortions in images generated by generative adversarial 

networks (GANs)) to reduce the risk of identity theft 

caused by AI-generated content. The system demonstrated 

a detection and defense rate of over 99 %, with 90 million 

activations in China, successfully intercepting over 20,000 

hacker attacks and providing secure verification support 

for cross-border financial transactions [1][6][14]. 
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The AI-powered anti-fraud investigation system 

integrates transformer-based intelligent speech 

recognition technology (with a word error rate of 3.2 %) 

and multimodal verification technology, capable of 

simultaneously analyzing speech intonation, speech rate 

variations, background noise, and textual semantic 

information. Through big data analysis, a high-

dimensional feature library (1024-dimensional feature 

vector) has been developed to detect abnormal risk 

behaviors such as telecom fraud, including identification 

of keyword combinations in fraudulent scripts, 

abnormal call durations, and high-frequency calling 

patterns involving non-local numbers. After 

implementing the multimodal fusion model, the 

system's fraud detection capability improved by 40 %, 

the fraud occurrence rate decreased by 22 %, and 

fraudulent calls were reduced by 92 %, with an 

estimated annual savings of nearly 300 million RMB 

[4][8][11]. 

In real-time transaction fraud detection, a 

monitoring system integrating machine learning and 

rule engines has been developed. By employing a 

"stream processing + batch processing" decision-

making approach, the system performs millisecond-

level risk assessments for each transaction, analyzing 

transaction amounts, frequency, geographical locations, 

device information, and user historical behavior patterns. 

The model achieved an Area Under the Curve (AUC) of 

0.997 on the validation set, significantly outperforming 

traditional logistic regression models (δAUC = 0.12, p 

< 0.001). This advancement not only enhances decision-

making efficiency but also minimizes interference with 

legitimate transactions during high-concurrency 

processing, ultimately improving customer satisfaction 

[3][4][21]. 

6. Compliance and Implementation Guarantees 

The scheme fully complies with the provisions of 

China's Cybersecurity Law, Data Security Law, 

Personal Information Protection Law, and the People's 

Bank of China Document No.261, strictly adhering to 

China's Cybersecurity Protection Standard (CSP 2.0) 

Level 3 specifications and the International Payment 

Card Industry Data Security Standard (PCI DSS) 

[1][8][24]. 

From a compliance research perspective, this 

solution employs a "legal-technical" dual-layer mapping 

model to provide technical solutions for legal issues and 

supervision in technology applications. It converts 12 

regulatory requirements into quantifiable security 

control indicators (for example, data encryption must be 

at least 256-bit AES algorithm, audit logs must be 

retained for at least 180 days and contain detailed 

information such as user operation timestamps, IP 

addresses, and operation content) [8][24]. 

This framework strengthens cybersecurity 

accountability mechanisms, aligns with AI security 

regulatory requirements, and defines the security 

obligations of network operators along with the 

protection framework for critical information 

infrastructure. It establishes a data classification 

management system (dividing data into four categories: 

public, internal, sensitive, and highly sensitive), 

implements a tiered protection mechanism for sensitive 

data (with dynamic desensitization and access permission 

minimization for ID numbers and bank card numbers), and 

enforces cross-border data flow controls (ensuring 

compliance through data outbound security assessments 

and local storage prioritization). Compliance requirements 

are grounded in legal provisions for network operation 

security and end-to-end data lifecycle protection [2][8][24]. 

Furthermore, by referencing the PDCA cycle model 

(Plan-Do-Check-Act) from the ISO/IEC 27001:2022 

Information Security Management System, the 

implementation requirements are thoroughly detailed, with 

risk management integrated throughout business 

operations. During implementation, this solution provides 

the financial industry with industry-specific templates 

(including disaster recovery and failover procedures, such 

as RTO ≤ 4 hours and RPO ≤ 15 minutes), round-the-

clock technical support, and quarterly attack defense drills 

(simulating APT attacks, ransomware scenarios, etc., to 

enhance emergency response capabilities), ensuring the 

continuous effectiveness of security systems [1][3][23]. 

Discussion of results 

During our research, we received guidance from 

Sergey Bronin, Associate Professor at the Department of 

Cybersecurity, Kharkiv Polytechnic University. We extend 

our sincere gratitude to him for his profound insights into 

the limitations of current research frameworks and future 

exploration directions. The core discussion focused on the 

application development of quantum encryption 

technology in financial transactions, inspired by Schor's 

post-quantum cryptography theory. Quantum computers 

can efficiently factor large integers, reducing 

computational complexity from classical exponential to 

polynomial levels. By combining quantum superposition 

and entanglement with quantum Fourier transform for 

large integer factorization, this method theoretically could 

crack most existing public-key encryption systems. This 

breakthrough marks the official launch of the next-

generation banking security system specifically designed 

for the digital economy era. 

In terms of research depth, future work will strengthen 

the foundation of quantum cryptography by integrating the 

"AI model interpretability" component. This approach 

involves using Shap value analysis for feature visualization 

in anti-fraud decision-making, recommending fast and 

accurate algorithms with tree interpreters for processing 

tree models (such as xgboost, lightgbm, and random 

forests), specialized methods with linear interpreters for 

linear models, and approximation techniques with deep 

interpreters for deep neural networks. Due to its broad 

applicability, Shap value analysis can reveal the 

importance ranking of global variables by calculating the 

Shap value of each feature, demonstrate how dependent 

variables change with specific features, and identify feature 

synergies through interaction analysis. Additionally, 

efforts will focus on upgrading lightweight edge nodes, 

such as optimizing the computational capabilities of 5G 

terminal inference engines through mobileNetV3 model 
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compression technology. By leveraging depthwise 

separable convolution, inverse residual architectures, 

NAS, SE modules, h-swish activation functions, and 

quantization techniques, the system effectively 

addresses challenges like limited computational 

resources and real-time requirements. This enables it to 

achieve state-of-the-art (SOTA) performance in real-

time moving object detection and semantic 

segmentation tasks. Not only does this provide critical 

support for the widespread application and practical 

implementation of AI technologies, but it also brings 

new challenges to the reconstruction and updating of 

banking network and information security strategies and 

systems. 

Conclusions 

The FSF framework tackles the challenge of 

fragmented protection in banking cybersecurity by 

implementing collaborative defense and intelligent 

coordination frameworks. By integrating AI-driven 

dynamic defense mechanisms into distributed security 

architectures, it shifts from passive defense to a 

proactive predictive posture. Theoretical advancements 

include: (1) introducing the "security resource density" 

metric to quantify the inherent resource synergy 

advantages of distributed architectures; (2) developing 

anti-fraud models combining LSTM and GBDT to validate 

the integration of heterogeneous models in financial 

scenarios; (3) establishing a "legal-technical" dual-layer 

compliance mapping model to simplify regulatory 

compliance. 

The cybersecurity solution based on the Federated 

Security Framework (FSF) architecture is continuously 

optimized through a tripartite framework encompassing 

"Technical Paradigm-Industry Impact-Future Evolution". 

Key innovations include: 1) Collaborative Security: The 

integrated LSTM-GBDT model employs federated 

learning (enhanced FedAvg algorithm incorporating 

adaptive optimization strategies proposed by McMahon et 

al. in 2024), overcoming the static threshold limitations of 

traditional rule-based systems to enable privacy-preserving 

data sharing among financial institutions; 2) Industry 

Impact: Aligned with digital transformation trends, this 

solution strongly supports security requirements in open 

banking and cross-border payment scenarios. Its API 

protection mechanism effectively manages risks in the 

evolving banking ecosystem (referencing open banking 

security framework research). However, current 

limitations reside in the use of only 37 branch samples, 

with future studies aiming to validate the model's 

generalization capabilities through dataset expansion.
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ДОСЛІДЖЕННЯ ТЕХНІЧНОЇ СХЕМИ МЕРЕЖЕВОЇ ТА ІНФОРМАЦІЙНОЇ БЕЗПЕКИ БАНКІВСЬКОЇ 

СИСТЕМИ НА ОСНОВІ АРХІТЕКТУРИ FSF 

В. Хао, С. В. Бронін 

Актуальність. Стрімка цифровізація банківського сектору зумовлює зростання різноманітних кіберзагроз, що 

потребує оновлення підходів до забезпечення мережевої та інформаційної безпеки. Традиційні ізольовані моделі захисту 

вже не здатні ефективно протидіяти багатовекторним атакам, тому виникає потреба у комплексних та скоординованих 

рішеннях. Предметом дослідження у статті є методи організації розподіленої архітектури безпеки для банківських систем 

на основі принципів FSF, включаючи алгоритми координації ресурсів, захисту даних і виявлення шахрайства. Метою 

статті є розроблення технічної схеми інтегрованої системи кіберзахисту, здатної забезпечити прогнозовану, динамічну та 

багаторівневу оборону банківської інфраструктури. Були отримані наступні результати. На основі FSF побудовано 

модель розподіленої системи безпеки з підтримкою міждоменної координації та автоматизованої синхронізації політик. 

Розроблено механізм фінансового захисту даних, який поєднує TLS 1.3, SM4-шифрування та WAF-фільтрацію, що 

забезпечує відповідність сучасним нормативним вимогам. Запропоновано гібридний AI-двигун для боротьби з 

шахрайством, який поєднує LSTM і GBDT та демонструє високу точність виявлення аномалій у транзакційних потоках. 

Показано ефективність моделі мобільного “edge-cloud” розвантаження, яка оптимізує обчислювальні ресурси та скорочує 

час реакції системи. Висновок. Проведене дослідження підтвердило, що комплексна інтеграція розподіленої архітектури 

FSF з інтелектуальними механізмами аналізу подій суттєво підвищує стійкість банківської системи до сучасних 

кіберзагроз. Установлена залежність ймовірності розвантаження завдань від інтенсивності трафіку та обчислювальних 

характеристик вузлів дозволяє оптимізувати захисні процеси та формується основою для подальшого розвитку 

адаптивних фінансових систем безпеки. 

Ключові  слова:  розподілена архітектура безпеки; координація ресурсів між доменами; штучний інтелект для 

запобігання шахрайству; динамічний цикл захисту; парадигма нульової довіри; шифрування даних; кібербезпека в 

банківському секторі. 
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