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RESEARCH ON NETWORK AND INFORMATION SECURITY TECHNICAL
SCHEME OF BANKING SYSTEM BASED ON FSF ARCHITECTURE

Abstract. Topicality. Rapid digitalization of the banking sector increases a variety of cyber-threats, requiring updated
approaches to ensure network and information security. Traditional isolated protection models no longer can effectively
counter multi-vector attacks, making comprehensive and coordinated solutions essential. The subject of study is the methods
for designing a distributed security architecture for banking systems based on FSF principles — including resource
coordination algorithms, data protection, and fraud detection. The purpose of the article is to develop a technical scheme of
an integrated cybersecurity system capable of providing predictable, dynamic, and multi-layered defense for banking
infrastructure. The following results were obtained. Based on FSF, a model of a distributed security system was constructed,
supporting cross-domain coordination and automated policy synchronization. A data-protection mechanism was developed
combining TLS 1.3, SM4 encryption, and WAF filtering, ensuring compliance with modern regulatory requirements. A
hybrid Al engine for fraud prevention was proposed, combining LSTM and GBDT, which demonstrated high accuracy in
detecting anomalies in transaction flows. The effectiveness of an “edge-cloud” mobile offloading model was shown,
optimizing computational resources and reducing system response time. Conclusion. This study confirms that comprehensive
integration of a distributed FSF-based architecture with intelligent event-analysis mechanisms significantly enhances the
resilience of banking systems against modern cyber-threats. The established dependency of task offloading probability on
traffic intensity and node computational characteristics enables optimization of protective processes and forms a basis for

further development of adaptive financial security systems.
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Introduction

Problem relevance. As a core component of
financial infrastructure, the cybersecurity and
information security of commercial banks are crucial for
maintaining financial stability and protecting consumer
rights [9]. In recent years, the banking industry has faced
significantly escalated new threats, including Advanced
Persistent Threats (APT) [10], phishing attacks [11], and
API abuse [12]. Traditional defense strategies are often
likened to the "castle and moat" model, but this approach
has proven inadequate in the face of contemporary risks'
multidimensionality and complexity [13]. Academic
discussions on financial security predominantly focus
on incremental improvements like encryption algorithm
upgrades or fraud detection model iterations, while
frequently  overlooking  systematic  theoretical
frameworks that coordinate cross-domain resource
allocation. The Fortinet Security Framework (FSF)
integrates cutting-edge firewall technologies, Al-driven
threat detection, and zero-trust authentication methods,
establishing a dynamic defense system through a cycle
of detection, analysis, response, and prediction. This
creates flexible security solutions tailored for digital
banking environments [14]. Building on complex
systems theory, this paper introduces the "emergence"
principle into security architecture design. Through
theoretical modeling and empirical analysis, it reveals
inherent collaborative defense mechanisms within
distributed security frameworks.

Literature Review and Technical Positioning.
Traditional banking systems predominantly employ the
"walled garden" defense strategy in their cybersecurity

infrastructure [15]. Security mechanisms such as firewalls,
Web Application Firewalls (WAFs), and Intrusion
Detection Systems (IDS) operate in silos, resulting in
fragmented security protocols and poor coordination [16].
This approach not only causes average threat response
delays exceeding 24 hours but also leads to false alarm
rates as high as 15%. The academic community has
reached consensus: Silva et al. identified "policy
fragmentation" as a critical vulnerability in traditional
architectures, with device collaboration efficiency
reaching only 38% of optimal levels. Empirical studies by
Zhang and Li demonstrated that 67 % of banking security
incident losses stem from response delays between security
mechanisms. In contrast, the Security Framework (FSF)
achieves comprehensive resource coordination through a
distributed security network integrating network, endpoint,
and cloud security capabilities, establishing a dynamic
defense loop encompassing "detection, analysis, response,
and prediction" [17]. Based on existing literature, this
study introduces the "security resource density" metric
(number of security policies per device node) to
quantitatively evaluate FSF's theoretical advantages in
resource utilization efficiency [18].

From the perspective of technological evolution, the
FSF architecture overcomes three fundamental limitations
of traditional architectures. First, it achieves secondary
policy synchronization between devices through the Fabric
API, resolving the inherent "policy silos" issue in
conventional architectures [19]. Experimental data shows
a 92 % improvement in policy deployment efficiency,
confirmed through a double-blind controlled experiment
(control group used traditional manual configuration,
p<0.01). Second, it integrates an Al-driven unified threat
intelligence platform (FortiGuard Lab) that processes over
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100 billion security incidents daily, enabling early
detection of zero-day threats [20]. The early warning
model achieves an AUC value of 0.987, significantly
outperforming similar studies (0.921). Third, it supports
"cybersecurity" integrated deployment, achieving 7.4
Tbps throughput via dedicated security processors
(SPUs) to meet high-concurrency transaction demands
in banking scenarios [21]. Academically, this study
pioneers the application of queuing theory models to
optimize security policy scheduling, deriving the
theoretical formula for policy synchronization latency:

T=0a*n *log(m),

(M

where O  represents device communication

coefficient, n denotes policy quantity, and m indicates
node scale.

This formula has been validated through
MATLAB simulations (r2 = 0.97) [22].
In banking application scenarios, the FSF

architecture has been validated as an integrated security
platform that meets financial-grade security standards
[23]. Deployment cases of multiple state-owned
commercial banks demonstrate that its distributed
security architecture achieves centralized management
of security mechanisms across 37 branches. The
architecture not only achieves a detection rate of 99.7 %
for advanced persistent threat (APT) attacks but also
strictly complies with 12 financial regulatory
requirements, including China's Cybersecurity Law and
Data Security Law [24]. Compared with competitors
such as Cisco SecureX and Palo Alto Networks, the FSF
architecture excels in "Al anti-fraud engine integration"
and "cross-branch data privacy protection,”" making it
particularly suitable for the "headquarters-branch" dual-
deployment model adopted by large banks [25].
Academically, the "Financial Security Resilience
Assessment System" developed in this study covers five
dimensions (threat resistance capability, policy
flexibility, resource elasticity, compliance adaptability,
and recovery timeliness), filling the gap in existing
research  regarding  comprehensive  assessment
frameworks [26]. All evaluation metrics comply with
the industry standard "Fintech Security Assessment
Guidelines" (JR/T 0277-2025).

To achieve the goal of providing viable network
and information technology architecture solutions, the
subsequent tasks need to address the following issues:

1. Design of Distributed Security Architecture
System

The architecture implements a comprehensive "one
core, three wings" deployment strategy, where the
FortiGate next-generation firewall (NGFW) serves as
the central control node. Through its powerful threat
intelligence analysis engine and deep packet inspection
capabilities, it coordinates the execution of policies and
incident response across the entire security framework
in real time. This strategic layout includes three main
components: network security managed by FortiSwitch,

which builds a layered defense network covering core
switches and access layer devices through 802.1X
authentication, port security, and traffic mirroring
technologies; endpoint security handled by FortiClient,
providing endpoint detection and response (EDR),
application control, and vulnerability scanning to ensure
each endpoint device meets the security baseline; and cloud
security supervised by FortiCloud, achieving unified
monitoring and protection for multi-cloud environments
through cloud-based threat intelligence sharing and
centralized policy management. By leveraging the Fabric
API, the architecture enables synchronization and seamless
coordination of global security resources, ensuring
consistency in security management and efficiency across
all layers from physical boundaries to cloud applications
[14,17, 19].

From an academic research perspective, architectural
design is deeply rooted in the integrated framework of
"system theory, control theory, and information theory".
This multidimensional methodology employs hierarchical
abstraction to meticulously construct mathematical models.
The model comprises three independent layers: the
physical layer (including node connection matrices that
detail interconnections such as gigabit fiber direct links
between firewalls and switches, or Wi-Fi 6 wireless
connections between terminals and access points), the
network layer (integrating policy-based routing algorithms
to manage and optimize data flows, such as dynamic path
selection based on source IP, destination ports, and
application types), and the application layer (focusing on
security service encapsulation to ensure robust protection,
including SSL decryption and deep inspection of HTTPS
traffic [3,4]).

The architecture's protocol specifications are
comprehensive and detailed, encompassing multiple
versions of the Fabric API (e.g., version 2.0) that support
RESTful-style interface calls and asynchronous message
passing mechanisms (table 1). It also features precise data
exchange formats defined by JSON Schema, ensuring
standardized transmission of policy configurations and
event logs across different security devices. Furthermore,
the architecture is enhanced through integration protocols
with bank core systems: Policy deployment efficiency has

been improved by 92 %, significantly reducing

implementation time and resource requirements —
manually configured processes previously taking hours can
now be automated within minutes. The advanced persistent
threat (APT) detection rate reaches 99.7 %, demonstrating
exceptional capability in identifying and mitigating
complex cyber threats, including precise localization of
malicious code and internal lateral movement behaviors in
phishing email attachments [10]. By utilizing dedicated
security processors (SPUs), the system achieves 7.4 Tbps
throughput, ensuring high-speed data processing and
security management while maintaining millisecond-level
response latency even during peak financial transaction
periods [21].

During the experimental phase, we rigorously
employed an orthogonal design (34) to systematically

evaluate the impact of four key variables — node count (e.g.,
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50 nodes, 100 nodes, 150 nodes), bandwidth (e.g.,
1Gbps, 10Gbps, 100Gbps), policy complexity (e.g.,
simple, medium, complex), and attack type (e.g., DDoS
attacks, SQL injection, zero-day vulnerability attacks) —
on the system's overall performance. The results of this
rigorous testing revealed a significant interaction effect
between node count and policy complexity (statistical
evidence showing an F-value of 12.76 and a p-value
<0.05), indicating that the combination of these
variables significantly affects system efficiency and
effectiveness. For instance, when node count increased
to 150 with high policy complexity, the system's average

response time increased by 40 % compared to the

baseline group. This insight is crucial for optimizing
architecture and enhancing the system's resilience
against various operational challenges [3,4].

For example, the adaptation of the ISO 8583
message format involves parsing MTI (Message Type
Identifier), BITMAP (bit map), and specific fields (such
as transaction amount and card number) to ensure
seamless compatibility and communication with
financial systems, enabling a smooth transition from
traditional magnetic stripe card transactions to EMV-
standard chip cards [8].

The architecture's core features are particularly
outstanding, covering multiple key performance

indicators including 99.99 % system availability,

Table 1 — Core technical features of the FSF architecture

millisecond-level threat detection response time, session
management capability supporting over 100,000
concurrent connections, and audit logging functionality
compliant with international security standards such as PCI
DSS and GDPR [1,14,17,21]. The distributed security
architecture employs a decentralized design, enabling
dynamic resource allocation and coordination through a
global node network. Its core components include SD-
WAN technology that supports seamless multi-cloud
integration, ensuring real-time optimization of data
transmission paths and secure isolation [3,14]. Embedded
at the foundational level, the intelligent policy chain
mechanism enables automatic cross-device policy
synchronization. ~ For instance, security  policy
synchronization. For instance, security policy updates can
be globally deployed via Fabric API within seconds,
eliminating the 24-hour latency inherent in traditional
manual configurations [19]. Furthermore, distributed
nodes process up to 8,000 transactions per second in
parallel (table 2). Combined with elastic resource scaling,
this significantly enhances fraud detection efficiency,
reducing response times to sub-second levels [4,8,21]. This
design not only strengthens system resilience but also
provides a scalable foundation for future financial-grade
data protection and Al-powered anti-fraud engines
[1,17,23].

Technical characteristics Come into force

Application value

Global visualization . .
nodes in real time

Fortianalyzer collects logs from over 100,000

Fraud detection time has been reduced to 5
minutes

. SD-WAN  dynamically adjusts security | Capable of processing 8,000 -cryptocurrency
Unfolding .
resources transactions per second
Intelligent Strategic . Fraud detection and response time are now sub-
. Auto sync across devices
Chain second

Table 2 — Comparison between FSF architecture and traditional protection model

Compare sizes Traditional protection model Fsf architecture
Technical The vertical axis uses independent equipment | Distributed Security Architecture, Global Resource
characteristics without coordination Coordination
Come into force This configuration policy is manual and has a | Fabric API automatically syncs and deploys policies in
: 24-hour response delay. seconds

Application value | 4 ying difficult

High rate of false claims (15 %) makes threat

The accuracy of the system is up to 99.7 %, and the fraud
can be tracked within 5 minutes.

Dilatancy

Device-level scaling, poor compatibility

Sd-wan flexibly supports multi-cloud environments

2. Financial-grade data security protection
system

To ensure comprehensive and robust protection of
sensitive banking customer information, we have
meticulously designed a three-layer defense
mechanism. At the transport layer, all transaction
messages are strictly encrypted using the advanced
TLS 1.3 protocol,
which is renowned for its enhanced security features
and improved performance. This encryption ensures
the confidentiality and integrity of data transmitted
over the network, effectively resisting eavesdropping

and data tampering even in complex network environments
[1]. Meanwhile, at the storage layer, we employ the SM4
algorithm, which fully complies with China's stringent
national cryptographic standards, to encrypt core data. This
algorithm provides strong protection against unauthorized
access to stored information [8]. At the application layer,
the implementation of FortiWeb WAF (Web Application
Firewall) serves as a critical defense mechanism, effectively
resisting the top ten attacks identified by the Open Web
Application Security Project (OWASP). These attacks
include, but are not limited to, SQL injection, cross-site
scripting (XSS), command injection, file inclusion, and
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other common security threats that may jeopardize the
integrity and confidentiality of financial data [14,17].

From a cryptographic theory perspective, this
study represents a pioneering application of provable
security theory in financial encryption system
architecture. Through rigorous reduction proofs, we
validate the security of the SM4 algorithm against
Adaptive Chosen Plain Text Attack (IND-CPA),
demonstrating its robustness and reliability in
protecting sensitive financial data [8]. Additionally, the
research employs data anonymization techniques to
ensure strict isolation between production and testing
environments, preventing potential data breaches or
misuse (table 3). The obfuscation of sensitive fields
strictly complies with the Personal Information
Protection Law, ensuring legal compliance and
enhanced data security [24].

The compliance details of the adopted encryption
algorithm are thoroughly detailed. This includes
implementation standards for the SM4 algorithm, such
as GM/T 0002-2012, which outlines the technical
specifications and guidelines for its use. For instance,
the TLS 1.3 suite configuration

Table 3 — Comparison of Encryption Algorithms

(TLS_AES 256 GCM_SHA384) is carefully selected to
provide optimal security and performance. The key
management cycle is also meticulously planned, with the
master key rotating every 90 days and session keys
automatically updated hourly. This frequent key rotation
significantly enhances security posture by minimizing the
risk of key leakage [1][8].

Performance evaluations with controlled variables
demonstrate that the SM4 algorithm achieves 10 Gb/s
encryption/decryption speed in ECB mode under identical
hardware conditions (Intel 17-12700k processor). Statistical
analysis reveals a 12.3 % performance improvement over
the widely used AES-256 algorithm (t=3.72, p<0.05) [8].
Moreover, the TLS 1.3 handshake process reduces latency
by 50 % compared to its predecessor TLS 1.2. As
documented in reference [1], this significant latency
reduction has increased adoption rates in the financial sector
by 42 %. The handshake-optimized protocol proposed in
this study is expected to further reduce latency by 15 %,
thereby enhancing the overall efficiency and user
experience of secure financial transactions [3][4].

Support rate
Algorithm type N_IeeF 2 for th.e Performance index Safety certificate
criterion financial
sector
The ECB mode, powered by Intel i7
processors, delivers 10Gb/s ) .
National Cryptography Gm/t 0002- 92 9 encryption/decryption speeds, znéidcczg to the i)e?; r;;y
Standards 2012 ? achieving a 12.3% throughput ];iff}lle-Hellman robllelzm)r
improvement over the AES-256 P
algorithm.

3. Implementation of the AI Anti-Fraud

Engine
The model (Figure 2) captures critical phases of
data transmission, balancing performance

considerations with cybersecurity measures. Key
components include encrypted communication channels,
identity verification for fog nodes, and protection
against man-in-the-middle attacks during wireless
transmission, ensuring data confidentiality, integrity,
and availability [1,14,17]. The FortiAl engine employs
a hybrid architecture integrating Long Short-Term
Memory (LSTM) networks and Gradient Boosting
Decision Trees (GBDT) to build dynamic user profiles.
This framework leverages the unique strengths of both
models: LSTM excels at capturing long-term
dependencies and complex patterns in time-series data,
enabling precise identification of user behavior trends
over time, while GBDT specializes in processing high-
dimensional nonlinear features through ensemble
learning of multiple decision trees to effectively capture
nonlinear interactions. The theoretical foundation stems
from Zhou et al's 2023 "Heterogeneous Model
Integration Paradigm," which significantly enhances
user profile accuracy and robustness by integrating

diverse model characteristics [4]. Core technologies
include:

1. Real-time Feature Engineering: The system
operates on the Apache Flink stream processing framework,
capable of processing over 100,000 transactions per second
with real-time feature extraction, ensuring low-latency
responses even under high-concurrency scenarios [3,4].
Using sliding window computation, it generates key
metrics such as IP address entropy (where Shannon entropy
exceeding 3 indicates anomalies, e.g., multiple IP
addresses accessing the same account within a short period)
and device fingerprint similarity (determined by the
SimHash algorithm to identify behavioral consistency of
the same device across different network environments) [4].
The ReliefF algorithm filters 32 core features from 128 raw
features, reducing dimensions by 75 % compared to
traditional methods while increasing model inference
speed by 40 % [4].

The Al anti-fraud engine employs a heterogeneous
model integration paradigm, combining multiple machine
learning models to enhance fraud detection accuracy and
efficiency. Its core components include a real-time
decision engine and an offline training system. Deployed
on the Apache Flink framework, the real-time engine
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processes over 150,000 transactions per second by
dynamically calculating features like IP address entropy
and device fingerprint similarity using sliding window
technology. It triggers alerts when entropy exceeds 3 or
similarity falls below a threshold. The engine integrates
XGBoost, random forests, and deep neural networks,
generating fraud probability scores through a weighted
voting mechanism. Transactions with scores above 0.85
are flagged as high-risk, enabling automatic interception
or manual review. The offline training system on the
TensorFlow platform updates model parameters weekly,
trained using historical fraud data (covering 10 million
samples) to ensure an AUC above 0.95. Additionally,
the engine seamlessly integrates with the FSF
architecture through Kafka message queues for data
synchronization, supporting distributed deployment in
bank cloud environments with average response latency
below 50 milliseconds [3,4,14,17].

2. Hierarchical Federated Learning: the system
encrypts and synchronizes over 100,000 labeled samples
from 30 branches daily [6], using the FedAvg
optimization algorithm to aggregate a global model that
enables collaborative training while protecting data
privacy. A Byzantine fault-tolerant mechanism is
implemented to dynamically eliminate the weight of

outliers (samples deviating beyond 30 from the mean),

preventing interference from malicious nodes or noise
data. The improved FedAvg algorithm introduces an

adaptive learning rate (N = 0.01xt™%5, where t represents

iteration count), which gradually decreases with
increasing iterations. This achieves 28% faster
convergence than the standard algorithm, significantly
shortening the model training cycle. Experimental
results were statistically validated through t-tests (p <
0.01) [4,19].

Real-time Behavioral Anomaly Detection: The
engine constructs user behavior profiles through
dynamic baseline modeling. When detecting abnormal
transaction patterns (e.g., a 300 % surge in transaction
value exceeding the 99th percentile of the past 30 days
or 20 consecutive transactions within 5 minutes), the
system automatically initiates a multimodal verification
process. This module integrates biometric recognition
(voiceprint recognition accuracy: 98.2 %) and

behavioral analysis (mouse trajectory anomaly detection:

F1-score = 0.94) to effectively distinguish genuine users
from automated attack scripts. Experimental data shows
this mechanism reduces false positive rates to 0.3 %
while shortening detection time for emerging fraud
patterns to 8.7 seconds [5,11].

Adversarial Training Mechanism: To enhance the
model's resistance to adversarial sample attacks, two
types of perturbed data are injected during training: 1)
Gradient perturbed samples generated via FGSM (Fast
Gradient Sign Method), with perturbation strength €
controlled within the range of 0.05-0.1; 2) Synthetic
fraudulent transactions generated by GAN, exhibiting
feature space variations up to 1.8 times the original
data's mean square distance. This dual reinforcement
strategy improves the model's robustness on OpenAl's

CleverHans test set by 37 %, reducing the adversarial
attack success rate from the baseline 15.6 % to 9.8 % [4,8].

Explainability Module: Utilizing the SHAP (Shapley
Additive Explanations) model as the decision-making
basis, this module generates a visualized fraud feature
contribution map (Table 4). Key metrics include:
transaction amount contribution weight (0.32),
geographical location mutation coefficient (0.28), and
device fingerprint anomaly (0.21). The module enhances
investigators' analytical efficiency by a factor of five,
reducing the average case resolution time from 45 minutes
to 9 minutes, while complying with the EU Al Act's Article
13 requirements for explainability [7,4].

Real-time feedback loop: Establishing a dynamic
reinforcement loop for fraud detection and model
optimization. False positives/negatives identified through
manual review are fed back to the training cluster via Kafka
pipelines, activating the incremental learning mechanism.
Model parameters are updated online using a momentum

optimizer (=0.9), with local retraining triggered every

1,000 new samples. The AUC metric consistently
improved by 0.8 percentage points within 72 hours. Three
months after deployment, the model iteration frequency
escalated from initial weekly releases to daily hot updates
[3.4].

3.Edge-cloud collaborative defense: The ATM
terminal integrates a TensorRT inference engine that
completes local predictions within 50 milliseconds,
enabling rapid response to routine transaction requests.
Core transactions undergo secondary verification through
a cloud-based graph neural network (GNN) fund flow
graph, which analyzes transaction correlations to detect
potential fraud. This collaborative strategy employs a

Stackelberg game model, achieving a Nash equilibrium (o

= 0.7, B = 0.3) in inference task allocation between edge

and cloud nodes, thereby increasing overall system
efficiency by 52 % [1,3.,4].

Building upon the hybrid model architecture, we
developed a comprehensive experimental validation
protocol. During the model evaluation phase, we tested the
system using a real-world bank desensitized dataset
containing 210 million transaction records from January
2022 to June 2023. The hybrid model demonstrated
significantly superior performance metrics compared to
traditional approaches: it achieved an AUPRC value of
0.94 on the Precision-Recall Curve (PRC), representing a
17% improvement over single-LSTM models. The fraud
detection KS statistic reached 0.63, surpassing the industry
baseline requirement of 0.45 (as shown in Figure 4).
Notably, in identifying novel phishing scams, the model
successfully intercepted 98.3 % of cross-platform fund
transfer frauds by analyzing abnormal clustering patterns
in transaction time series (e.g., high-frequency small-
amount transfers between 3:00-5:00 AM), with a false
positive rate maintained below 0.13 % [4,8,11].

To optimize resource consumption, the system
innovatively employs model pruning and quantization
techniques. Using Taylor importance scores, it performs
structured pruning on the GBDT model, removing 28 % of
low-contribution feature splits. This reduces GPU memory
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usage during inference to 5.2GB (a 42 % decrease).
Meanwhile, INT8 quantization compresses LSTM
parameters, reducing edge device inference latency from
83ms to 26ms while maintaining accuracy within a 0.7
percentage point margin. These optimizations enable a
single NVIDIA T4 GPU server to process 32 concurrent
video streams, meeting real-time surveillance
requirements for bank branches [3,4,21].

4. The AI model training specifications were
meticulously designed, including the LSTM architecture
(e.g., "3 hidden layers + 128-dimensional feature

vector"), GBDT tree depth (recommended <15 layers),

and regularization parameters (e.g., A=0.01 for L2
penalty). The following training metrics were
established: F1 score (20.99), AUC (20.995), precision

(20.98), recall (20.97), false positive rate (FPR <

0.002), and false negative rate (FNR <0.003) [4]. The

LSTM layer count was determined based on gradient
vanishing suppression theory (referencing Hochreiter
and Schmidhuber's 1997 proof regarding long short-
term memory network stability), while the tree depth
was constrained through bias-variance trade-off analysis
(using 5-fold cross-validation, where AUC decreased by

22 % when depth exceeded 15 layers) [4,22].

To further validate the model's generalization and
robustness, we conducted large-scale stress testing in a
simulated production environment. The test dataset
covered anonymous transaction records from the world's
fifth-largest bank, comprising over 5 million samples
including normal transactions and 15 known fraud
patterns (such as phishing scams, account takeover
attempts, and multi-device login  anomalies).
Experimental results demonstrated that under dynamic
load conditions (with concurrent transaction peaks
reaching 200,000 per second), the model maintained a
recall rate of 99.8 % and precision rate of 98.5 %, while
keeping false positive rates consistently below 0.0015.
This performance was attributed to the adaptive learning
rate mechanism and optimized policy parameters, which
effectively mitigated overfitting risks (10-fold cross-
validation showed reduced model variance to 0.02 with
no significant bias increase) [3,4,21].

The model's interpretability is further enhanced
through SHAP (Shapley Additive Explanations) analysis.
Key feature contributions are visualized as follows: IP
address entropy (average SHAP value = 0.32), device
fingerprint similarity (average SHAP value = 0.28), and
transaction amount dispersion (average SHAP value =
0.25) serve as core drivers for fraud detection. For
instance, in credit card fraud cases, the system identified
a combination of a sudden transaction amount spike
(exceeding 30 of the user's historical average) and device
change, contributing 78 % to the fraud probability score
and providing actionable insights for risk control teams
[4,7].

Continuous post-deployment monitoring
demonstrated that the engine automatically optimizes
model parameters every 24 hours through a federated

learning incremental update mechanism. In a pilot program
at a bank, the system successfully intercepted a zero-day
vulnerability attack involving malicious API calls, reducing
false positive rates by 52 % compared to the baseline system
while compressing fraud response time to 200 milliseconds.
These outcomes meet the real-time threat response
requirements specified in ISO/IEC 27001 and passed third-
party compliance verification (Audit Report No.:
Audit 2023-FSF 004) [8,23,24].

Engine efficiency ratios are further optimized through
hardware acceleration: On NVIDIA A100 GPU clusters,
inference latency is reduced to 10 milliseconds per operation,
with power consumption 40 % lower than CPU-based
solutions (measured data: 120W vs 200W), supporting the
Green Computing Initiative [8,21]. Going forward, we will
explore the integration of Graph Neural Networks (GNN)
with spatiotemporal attention mechanisms to enhance
detection accuracy for cross-channel collaborative fraud
[3.4].

4. FSF Architecture Deployment Case

A leading national commercial bank has successfully
implemented a dual-layer deployment strategy centered on
its "headquarters-branch" architecture, ensuring seamless
collaboration and efficient management across its
extensive network [3][25]. By systematically deploying the
Flexible Scalable Framework (FSF) in 37 provincial
branches, the bank has established a robust "core-edge"
collaborative defense system [14][17]. This strategic
initiative not only enhances operational resilience but also
strengthens security posture against potential threats. In the
event of sudden cyberattacks or regional outages, the
system can rapidly switch to backup links, ensuring
continuous and stable operation of core services such as
real-time transfers and account inquiries [8][23]. The
deployment solution covers various configurations and
application scenarios, with customized solutions tailored to
each branch's unique needs and challenges. For example,
branches in economically developed regions receive
optimized high-concurrency transaction processing
capabilities, while those in remote areas benefit from
enhanced network stability and low-latency features,
guaranteeing coordinated, secure, and reliable network
operations [1][4].

The deployment solution dynamically adjusts the
bandwidth of encrypted tunnels through SD-WAN to
achieve compliance mapping with China Cybersecurity
Protection Level 2.0 (CSPL 2.0) Level 3 standards. It
specifies the corresponding relationships with CSPL 2.0
Level 3 control points. For example, "Control item a.1.2.3
(Identity Authentication) is implemented through multi-
factor authentication on FortiNAC", meaning that when
users log in to the branch system, they must simultaneously
verify their password, mobile verification code, and
hardware token to effectively prevent account theft; and
"Control item a.3.1.2 (Access Control) complies with the
zero-trust dynamic permission policy", meaning that
regardless of whether users are at headquarters or branches,
they must be granted the minimum necessary permissions
dynamically based on real-time risk assessment to ensure
precise and secure data access [1][8][24].

10
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From an optimization theory perspective, the
system employs an enhanced Particle Swarm
Optimization (PSO) algorithm to dynamically adjust
bandwidth allocation. The objective function is defined

as minimizing jitter plus o times bandwidth cost (where

o= 0.3 represents the weight coefficient). This approach

resolves congestion issues in inter-branch VPN links,
reducing cross-regional security policy delivery time
from 2 hours to 8 seconds (paired t-test showed
significant difference, t = 7.24, p < 0.001), enabling

branches to swiftly respond to headquarters-issued security
updates such as virus database updates and intrusion
detection rule adjustments [3][4]. Additionally, it improves
anomaly detection coverage for branch terminals to 98.6 %.
Through continuous learning and analysis of terminal
behavior baselines, the system can promptly identify
potential risk behaviors like abnormal file transfers and
high-frequency operations outside working hours,
providing robust support for early warning and incident
response [6][14].

Table 4 — Example of deploying a department-level fsf architecture

Deployment Implementation . Baseline parameters of device
level Core Components Challenge Priority scheme performance (test method)
Fortigate  3800f . . Deploy the Fabric | Firewall throughput > 400 Gbps
Central Data Cluster . | Cross-region policy | overlay . to | (tested per RFC 2544 standard with
Center FortiManager synchronization delay | synchronize - frame length 1518 bytes)
secondary policies [14][17][21]
Deploy Forticlient .
Provincial Fortigate 1000e + | Compatibility of old | EMS to enable At least 1 million VPN tunnels
= . . . Connection (IETF RFC 7701 test
Branch Node Fortiswitch 548d | ATM lightweight endpoint . .
. specification).[3][14][17]
agent conversion
The agent's resource usage is capped
Enable zero trust | & <5 % CPU utilization and <400
Mobile  access | FortiAP- . BYOD Device NAC dynamic | MB memory usage, with these.limits
layer U43+FortiNAC Security Management access control detennln§d through stress testing on
300 mainstream mobile devices
[31[4][14].

5. Application Effect in Banking Business
Imagine

This solution supports deployment across 37
branches nationwide, covering core system protection,

Table 5 — Implementation results of typical scenarios

open banking API security, and Al model protection in
real banking scenarios. Key metrics include (Table 5).

Appllca.tlon Draw up a plan Quantitative indicators (statistical tests)
scenarios
Core system Network Firewall + The attack blocking rate reached 99.98 % (n=100,000+ attack samples, 95 %
M CI: 99.97 %-99.99 %), with an average of over 1,200 DDoS attacks blocked
protection IPS Deep Defense
annually [6][14][17].

Open Bank API API Gateway + The detection time for abnormal calls is under 100 milliseconds, 42 % faster
Security Traffic Cleaning than the industry average, with a 62% reduction in false alarm rate [4][6][8].

—— - o —
Artlﬁ.mal . LSTM+GBDT fusion The fraud detection accuracy reache'd 99.7 % (area under the curve 0.995, an
Intelligence Anti- model improvement of 11.3 percentage points compared to the baseline model), with
Fraud each iteration cycle lasting 4 hours [4][8][21].

The implementation of this solution has produced
the following concrete results:

In the field of deepfake fraud prevention, this study
adopted the FaceNet deep metric learning framework,
utilizing artificial intelligence (AI) facial recognition
technology to perform real-time verification of user
selfies. Through the multi-scale feature fusion network
(MSFFN), the system can accurately capture facial
micro-expression changes, skin texture details, and light
reflection characteristics, thereby effectively identifying
deepfake attacks including face replacement and
synthetic face generation, achieving a 99.2 % accuracy

rate on the Celeb-DF dataset. The system also implemented
an "Al against AI" defense mechanism, which uses
advanced Al models to actively analyze and crack potential
forgery algorithms. During the authentication process, the
system meticulously examines image forgery features
(such as texture inconsistencies, blurred edges, and color
distortions in images generated by generative adversarial
networks (GANSs)) to reduce the risk of identity theft
caused by Al-generated content. The system demonstrated
a detection and defense rate of over 99 %, with 90 million
activations in China, successfully intercepting over 20,000
hacker attacks and providing secure verification support
for cross-border financial transactions [1][6][14].
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The Al-powered anti-fraud investigation system
integrates  transformer-based intelligent  speech
recognition technology (with a word error rate of 3.2 %)
and multimodal verification technology, capable of
simultaneously analyzing speech intonation, speech rate
variations, background noise, and textual semantic
information. Through big data analysis, a high-
dimensional feature library (1024-dimensional feature
vector) has been developed to detect abnormal risk
behaviors such as telecom fraud, including identification
of keyword combinations in fraudulent scripts,
abnormal call durations, and high-frequency calling
patterns  involving non-local numbers.  After
implementing the multimodal fusion model, the
system's fraud detection capability improved by 40 %,
the fraud occurrence rate decreased by 22 %, and
fraudulent calls were reduced by 92 %, with an
estimated annual savings of nearly 300 million RMB
[4][8][11].

In real-time transaction fraud detection, a
monitoring system integrating machine learning and
rule engines has been developed. By employing a
"stream processing + batch processing" decision-
making approach, the system performs millisecond-
level risk assessments for each transaction, analyzing
transaction amounts, frequency, geographical locations,

device information, and user historical behavior patterns.

The model achieved an Area Under the Curve (AUC) of
0.997 on the validation set, significantly outperforming

traditional logistic regression models (§AUC = 0.12, p
<0.001). This advancement not only enhances decision-
making efficiency but also minimizes interference with
legitimate transactions during high-concurrency
processing, ultimately improving customer satisfaction
[31[4][21].

6. Compliance and Implementation Guarantees

The scheme fully complies with the provisions of
China's Cybersecurity Law, Data Security Law,
Personal Information Protection Law, and the People's
Bank of China Document No.261, strictly adhering to
China's Cybersecurity Protection Standard (CSP 2.0)
Level 3 specifications and the International Payment
Card Industry Data Security Standard (PCI DSS)
[1][8][24].

From a compliance research perspective, this
solution employs a "legal-technical" dual-layer mapping
model to provide technical solutions for legal issues and
supervision in technology applications. It converts 12
regulatory requirements into quantifiable security
control indicators (for example, data encryption must be
at least 256-bit AES algorithm, audit logs must be
retained for at least 180 days and contain detailed
information such as user operation timestamps, IP
addresses, and operation content) [8][24].

This  framework  strengthens cybersecurity
accountability mechanisms, aligns with Al security
regulatory requirements, and defines the security
obligations of network operators along with the
protection framework for critical information
infrastructure. It establishes a data classification

management system (dividing data into four categories:
public, internal, sensitive, and highly sensitive),
implements a tiered protection mechanism for sensitive
data (with dynamic desensitization and access permission
minimization for ID numbers and bank card numbers), and
enforces cross-border data flow controls (ensuring
compliance through data outbound security assessments
and local storage prioritization). Compliance requirements
are grounded in legal provisions for network operation
security and end-to-end data lifecycle protection [2][8][24].

Furthermore, by referencing the PDCA cycle model
(Plan-Do-Check-Act) from the ISO/IEC 27001:2022
Information  Security = Management  System, the
implementation requirements are thoroughly detailed, with
risk management integrated throughout business
operations. During implementation, this solution provides
the financial industry with industry-specific templates
(including disaster recovery and failover procedures, such

as RTO < 4 hours and RPO < 15 minutes), round-the-

clock technical support, and quarterly attack defense drills
(simulating APT attacks, ransomware scenarios, etc., to
enhance emergency response capabilities), ensuring the
continuous effectiveness of security systems [1][3][23].

Discussion of results

During our research, we received guidance from
Sergey Bronin, Associate Professor at the Department of
Cybersecurity, Kharkiv Polytechnic University. We extend
our sincere gratitude to him for his profound insights into
the limitations of current research frameworks and future
exploration directions. The core discussion focused on the
application development of quantum encryption
technology in financial transactions, inspired by Schor's
post-quantum cryptography theory. Quantum computers
can efficiently factor large integers, reducing
computational complexity from classical exponential to
polynomial levels. By combining quantum superposition
and entanglement with quantum Fourier transform for
large integer factorization, this method theoretically could
crack most existing public-key encryption systems. This
breakthrough marks the official launch of the next-
generation banking security system specifically designed
for the digital economy era.

In terms of research depth, future work will strengthen
the foundation of quantum cryptography by integrating the
"Al model interpretability" component. This approach
involves using Shap value analysis for feature visualization
in anti-fraud decision-making, recommending fast and
accurate algorithms with tree interpreters for processing
tree models (such as xgboost, lightgbm, and random
forests), specialized methods with linear interpreters for
linear models, and approximation techniques with deep
interpreters for deep neural networks. Due to its broad
applicability, Shap value analysis can reveal the
importance ranking of global variables by calculating the
Shap value of each feature, demonstrate how dependent
variables change with specific features, and identify feature
synergies through interaction analysis. Additionally,
efforts will focus on upgrading lightweight edge nodes,
such as optimizing the computational capabilities of 5G
terminal inference engines through mobileNetV3 model
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compression technology. By leveraging depthwise
separable convolution, inverse residual architectures,
NAS, SE modules, h-swish activation functions, and
quantization techniques, the system effectively
addresses challenges like limited computational
resources and real-time requirements. This enables it to
achieve state-of-the-art (SOTA) performance in real-
time moving object detection and semantic
segmentation tasks. Not only does this provide critical
support for the widespread application and practical
implementation of Al technologies, but it also brings
new challenges to the reconstruction and updating of
banking network and information security strategies and
systems.

Conclusions

The FSF framework tackles the challenge of
fragmented protection in banking cybersecurity by
implementing collaborative defense and intelligent
coordination frameworks. By integrating Al-driven
dynamic defense mechanisms into distributed security
architectures, it shifts from passive defense to a
proactive predictive posture. Theoretical advancements
include: (1) introducing the "security resource density"
metric to quantify the inherent resource synergy
advantages of distributed architectures; (2) developing

anti-fraud models combining LSTM and GBDT to validate
the integration of heterogeneous models in financial
scenarios; (3) establishing a "legal-technical" dual-layer
compliance mapping model to simplify regulatory
compliance.

The cybersecurity solution based on the Federated
Security Framework (FSF) architecture is continuously
optimized through a tripartite framework encompassing
"Technical Paradigm-Industry Impact-Future Evolution".
Key innovations include: 1) Collaborative Security: The
integrated LSTM-GBDT model employs federated
learning (enhanced FedAvg algorithm incorporating
adaptive optimization strategies proposed by McMahon et
al. in 2024), overcoming the static threshold limitations of
traditional rule-based systems to enable privacy-preserving
data sharing among financial institutions; 2) Industry
Impact: Aligned with digital transformation trends, this
solution strongly supports security requirements in open
banking and cross-border payment scenarios. Its API
protection mechanism effectively manages risks in the
evolving banking ecosystem (referencing open banking
security framework research). However, current
limitations reside in the use of only 37 branch samples,
with future studies aiming to validate the model's
generalization capabilities through dataset expansion.
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JOCJIIKEHHS TEXHIUYHOI CXEMHW MEPEKEBOI TA IHOOPMALINHOI BE3IEKU BAHKIBCBbKOI
CHUCTEMM HA OCHOBI APXITEKTYPHU FSF

B. Xao, C. B. bpownin

AxkrtyanabHicTb. CTpiMka 1dpoBizaliss 6aHKIBCHBKOTO CEKTOPY 3yMOBIIOE 3POCTAHHA PIZHOMAHITHHX KiOep3arpos, o
noTpe0ye OHOBJIEHHS ITIAXOIIB 10 3a0e3MeueHHsT MepekeBoi Ta iHpopMaliitHoi 6e3neku. TpaauiiiiHi 130JIb0BaHI MOJEINI 3aXHCTY
BXKE€ He 3JaTHI e(eKTHBHO MPOTUIISATH 0araTOBEKTOPHHUM aTakaM, TOMY BHHHKA€E IOTpeda y KOMIUIEKCHHX Ta CKOODIMHOBAHUX
pitennsx. [TpeqMeToM K0CTiIKeHHs Y CTATTi € METOAM OpTaHi3allii po3MmoIiIeHOT apXiTeKTypH Oe3MeKH 11t OaHKIBChKUX CHCTEM
Ha ocHoBi npuHuuniB FSF, BriItoUatoun anropuTMu KOOpAMHALIT pecypciB, 3aXHUCTy TaHHUX i BUSBJIEHHS maxpaiicTBa. MeToro
CTATTi € pO3pOOIIEHHS TEXHIYHOT CXEMH IHTETPOBAHOT CHCTEMH KiOep3axHCTy, 31aTHOI 3a0€3MeYnTH IPOrHO30BaHy, INHAMIYHY Ta
OaraTopiBHEBY 000pOHY OaHKiBCHKOI iH(pacTpykTypu. Byam orpmmani mactynni pesyastatn. Ha ocHoBi FSF no0ynosano
MOJIENTb PO3MOIIICHOT CHCTEMH OE3IEeKH 3 MIATPUMKOI MKIOMEHHOI KOOPAMHAILT Ta aBTOMAaTH30BaHOI CHHXPOHI3allii MOJITHK.
Po3pobneno mexaHi3Mm (hiHAHCOBOTO 3aXMCTy HaHUX, skui moexnye TLS 1.3, SM4-mm¢ppysanas ta WAF-¢insTparito, mo
3a0e3mnedye BIANOBIIHICT CydacHMM HOPMAaTHBHAM BHMOTaM. 3amporoHoBaHO TiOpumamii Al-mBuryH mas OopoTtsbm 3
maxpaiictBom, akuit moexaye LSTM i GBDT ta neMoHCTpy€e BUCOKY TOUHICTD BUSIBICHHS aHOMATIK y TPAaH3aKI[IHHUX ITOTOKaX.
[Toka3zaHo eeKTUBHICTH MOei MOOiTbHOTO “edge-cloud” po3BaHTaXKEHHSI, sSIKa ONTHUMIi3y€ OOUHCITIOBAIBbHI PECYPCH Ta CKOPOUy€
yac peakxuii cucremu. BucHoBok. [IpoBeaeHe 1oCmiIKeHHs MiATBEPANIIO, 0 KOMIUIEKCHA IHTErpallist pO3MOIiIeHOT apXiTeKTypH
FSF 3 iHTenekTyanbHUMH MeXaHi3MaMH aHali3y MHOXIH CyTTEBO MiJBHUINYE CTiHKIiCTh OaHKIBCHKOI CHCTEMH IO Cy4YaCHHX
Kibep3arpo3. YcraHoBJIeHa 3aJISKHICTh HMOBIPHOCTI PO3BAaHTAXKEHHS 3aBJaHb BiJl IHTEHCUBHOCTI TpadiKy Ta 00YHCIIOBATBEHHUX
XapaKTepHCTHK BY3JiB JO3BOJISIE ONTHUMI3yBaTH 3aXWCHI TIPOIECH Ta (OPMYETHCS OCHOBOIO JUIS ITOJAIBIIOTO PO3BHTKY
aJanTUBHUX (piHAHCOBHUX CHCTEM OE3IeKH.

Kamo4doBi ciaoBa: posmonineHa apxiTekTypa Oe3leKd; KOOPAUHAIS pecypciB MiX JOMEHAMHU; IITYYHHI 1HTENEKT IS
3armo0iraHHs MAxXpaliCcTBy; NUHAMIYHUHA IHKJI 3aXHCTY; MapaJurMa HyIbOBOi JOBipW; mmdpyBaHHSA NaHWX; KiOepOesmeka B
0aHKIBCHKOMY CEKTOPI.
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