Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

UDC 518.5 doi: https://doi.org/10.20998/3083-6298.2025.02.09

Iryna Serdyuk!, Oleh Tonitsa', Oksana Gelyarovska', Oleksiy Yanovsky!

!'National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

INFORMATION TECHNOLOGIES OF NEURAL NETWORK SPEECH
RECOGNITION IN REAL-TIME

Abstract. Relevance. Nowadays, it is relevant to study the basic means of audio signal processing, mainly from the point
of view of sound classification and approaches to their improvement. The general characteristics of sound signals are considered,
followed by a description of the time-frequency images for sound and the attributes useful for classification are reviewed. Human
hearing is an incredible tool that gives us a lot of information about the world around us. We easily catch the sounds of birds, the
sounds of cars at a distance, and even complex musical compositions. The subject of the study in the article is the human
auditory system, which is able to process all this information, analyzing and grouping different sounds. This process is known as
auditory scene analysis. Applications such as speech recognition, music transcription, and multimedia data retrieval can be
greatly improved by separating and classifying sound sources. Digital audio signal processing has a number of important
applications, such as audio compression, sound effect synthesis, and sound classification. Sound classification is becoming
increasingly important as more and more multimedia content is created. This is especially useful when it comes to searching
through audiovisual materials, as listening to audio clips can be a more efficient way to navigate than watching video scenes.
Sound classification can also be used as an interface for audio compression, as different types of sounds, such as music and
speech, require different compression methods. The purpose of this work is to explore approaches to building neural network
speech recognition systems. Real-time speech recognition has become an incredibly useful tool for solving a variety of problems
in different areas of life. Many companies now offer dictation software that allows people to create search queries or dictate
emails using voice commands. It is appropriate to consider neural network speech recognition, in particular, Ukrainian. One of
the biggest problems faced by the analysis of Ukrainian speech is the limited number of models available for recognition. While
there are many models for English, there are very few for Ukrainian. In general, the potential benefits of sound processing and
speech recognition are obvious, and it is quite likely that we will continue to see new developments in these areas in the future.
Neural networks are described, the principle of their operation and methods of audio recognition using them. The following
results were obtained: the audio signal, its representation, statistical and physical methods of working with it were studied.
Conclusion. Effective models for correct speech recognition and toolkits for model training were found.

Keywords: neural networks, audio signal processing, convolutional neural network, gestalt grouping, cochlear
model,dataset

Introduction quantity at a certain point in the auditory pathway.
Computational models of hearing simulate the functions
of the outer, middle, and inner ears, which work
together to transform acoustic energy into neural code in
the auditory nerve. These models approximate different
stages of auditory processing and are intended to
explain the results of psychoacoustic experiments. For
example, cochlear models simulate how the basilar
membrane filters sound and how this activity is
translated into neural activation along the pinna.
Various models have been proposed over time, but the
cochlear model, which combines sound intensities in
different frequency ranges using critical bandpass
filters, is popular. These filters correspond to different
cochlear channels, which are processed independently
of each other at higher levels of the auditory pathway.
The cochlear model creates an “auditory image” that is
the basis of cognitive functions in the brain.
Psychoacoustic observations show that the subjective
sensations of spectral components entering the cochlear
canal differ from those entering the individual channels

When the air pressure on the eardrum changes, a
sound wave is produced, and some of the properties of
the sound can be seen in a time-frequency diagram that
can help identify its different sources. This definition is
based on the Gestalt grouping rules [1], which can also
be used to help machines classify and separate sounds.
Humans first analyze sound by its frequency, so a time-
frequency representation of sound is a useful tool. There
are two main ways to visually represent sound:
spectrograms and auditory imagery. A spectrogram uses
the Fourier transform to analyze the signal, while
auditory imagery highlights the most important features
based on how humans perceive the sound. Acoustic
signal analysis involves using the Fourier transform to
create two real-world frequency functions, known as the
amplitude spectrum and the phase spectrum. To track
changes in the signal over time, Fourier transform
spectra of overlapping window segments are calculated
at short, successive intervals. However, the phase
spectrum is not considered as sensitively as the
magnitude or power spectrum. From the effective value 1. Mathematical statement of the problem
spectra, a spectrogram is obtained, which provides a  The human ear can hear sounds with frequencies from
graphical representation of the frequency-time content 50 Hz to 20 GHz, as long as they do not exceed the
of the signal. "threshold of hearing". The range of sound intensity is

The auditory representation is usually created by  onormous (approximately 120 dB): from the noise of
computing an auditory model that captures the physical rustling leaves to the noise of an airplane taking off. A

digital audio signal is obtained by sampling and
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quantizing the electrical output of a microphone with a
sampling frequency of 44100 Hz, which is commonly
used. Sounds can be classified into different categories,
such as environmental sounds, artificial sounds, speech
and music, etc. Sound events can be described by their
temporal and spectral properties. Examples of atomic
sound events include short sounds, such as a door
slamming, and longer, uniform, textured sounds, such as
continuous rain. Temporal properties refer to the
duration of the sound and its amplitude modulations,
while spectral properties refer to its frequency
components and their relative strengths.

Audio signals are complex and diverse, with both
spectral and temporal properties affecting their
perceptual quality. Representing audio signals requires a
joint consideration of both aspects, and short-term
analysis is commonly used to estimate signal
parameters. Various models can be used to approximate
audio signals, such as the source-filter model for speech
signals and the sum of elementary components for
music. Audio signals are physical stimuli that are

processed by the auditory system to evoke
psychological sensations in the brain. Perceptual
characteristics such as pitch, loudness, subjective

duration, and timbre have been studied since Helmholtz
in 1870. These sensations are correlated with various
spectral and temporal properties of sound, and it is
important to consider both when representing audio
signals. Short-term analysis is commonly used to
estimate signal parameters or features that relate to the
underlying signal model. For example, speech signals
can be approximated using the source-filter model,
while music is modeled as a sum of elementary
components.

Audio signals can be periodic or aperiodic.
Periodic waveforms are more complex, consisting of a
fundamental frequency and a series of overtones, while
aperiodic waveforms can contain inharmoniously
related sinusoidal tones or a frequency noise waveform.
Different amplitudes and phases of the frequency
components can affect the overall “color” or timbre of
the sound. This is important in speech, where tonal and
noise regions alternate according to vowel segments,
and in music, where the fundamental frequency and
duration can vary greatly. It is useful to study the basic
means of audio signal processing, mainly from the
perspective of sound classification, to consider the
general characteristics of audio signals, followed by a
description of time-frequency representations for sound,
as well as attributes useful for classification [1,2].

It is necessary to describe the neural networks that
are proposed to be used, their principles of operation
and methods of audio recognition with their help and to
study the audio signal, its representation, statistical and
physical methods of working with it. The use of
convolutional neural networks, their principles of
operation and features are proposed. It is necessary to
consider the use of convolutional networks for audio
recognition.

2. Mathematical model and methods for solving
the problem

On the time-frequency diagram, you can see the
properties of sound, which can help to identify its
different sources. This is based on the Gestalt grouping
rules that are used to help classify and separate sounds.
People first analyze sound by its frequency, so the time-
frequency representation is a useful tool. There are two
main ways to visually represent sound: spectrogram and
auditory image. The spectrogram uses the Fourier
transform to analyze the signal, while the auditory
image highlights the most important characteristics
based on how people perceive sound. Acoustic signal
analysis involves using the Fourier transform to create
two real-world frequency functions, known as the
amplitude spectrum and the phase spectrum. To track
changes in the signal over time, Fourier transform
spectra of overlapping window segments are calculated
at short successive intervals. However, the phase
spectrum is not considered as sensitively as the
magnitude or power spectrum. From the rms spectra, a
spectrogram is obtained, which provides a graphical
representation of the frequency-time content of the
signal.

We have considered how to visually represent
audio content using spectrograms and audio signals.
However, these representations also have many
dimensions, which makes them difficult to use for
classification. Ideally, we want to extract low-
dimensional features from these images or from the
audio signal itself that highlight important differences
between different types of audios. The international
standard for describing audiovisual content, MPEG-7,
which is the standard for describing audiovisual content,
proposes the use of transformed spectral vectors that are
reduced in dimension and decorrelated. A very common
method for feature development is to have a complete
understanding of the defining features of a signal from
both its production and perception perspectives. The
goal is to identify features that remain unchanged
despite irrelevant changes. Feature extraction is an
important aspect of signal processing that involves
transforming an audio signal into a numerical
representation that describes a particular audio segment.
Machine learning algorithms often use input data to
partition the feature space into regions, with each region
corresponding to a specific class. A comprehensive set
of features carefully designed for a specific audio
classification task can effectively classify audio signals
with a sufficient amount of training data. This is a
smaller component of the larger task of auditory scene
analysis. When an audio stream consists of many
different events from different classes that do not occur
simultaneously, splitting the stream into separate events
for each class can be achieved by monitoring changes in
the values of features typical of the segment boundaries.
However, if signals from different sources overlap in
time, it becomes much more difficult to separate the
streams. Research into sound categorization has led to
the development of a vast collection of computational
features. These features can be broadly grouped into
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two categories: physical and perceptual. Physical
features are directly related to measurable properties of
an audio signal and are independent of human
perception, but perceptual features are subjective and
require precise computation using auditory models.
These features can be classified as static or dynamic.
Static features refer to features of an audio signal that
can be captured at a specific point in time by analyzing
a short segment of data. In essence, they provide a
snapshot of the properties of the signal at a given point
in time. Representing static features over a longer
period of time leads to better classification. Typically,
the time window lasts from 500 milliseconds to 1
seconds. This duration defines the delay to 1 seconds in
the task of identifying or categorizing sounds. Physical
features refer to signal parameters that capture specific
characteristics of an audio signal in terms of time or
frequency. Although some of these features may be
perceptually determined, they are still considered
physical features because they originate from the
amplitudes of the audio signal or its short-term spectral
values. Let us consider some of the most commonly
used physical features. In the equations above, the
subscript “ ” indicates the current window, which is the

sample of the data segment x,. [n] of length N.

Then, for window analysis, we have:

[nfi[.’.i.]zvjﬁ[xrﬁkll...i[k]] m

The zero-crossing rate (ZCR) is a quantity that
determines the number of times a signal crosses the zero
axis during a certain time interval, in our case within a
certain frame. It is defined as

. ZCR, =

Z|s1gn
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where sign(x) = {

x(n)l @

sign(

1, x>0
-1, x<0.’

In the case of narrowband signals such as a sine
wave, the ZCR corresponds directly to the fundamental
frequency. However, for more complex signals, the
ZCR is closely related to the average frequency of the
energy concentration. In the case of linguistic signals,
the short-term ZCR fluctuates rapidly between the
voiced and unvoiced segments due to the different
spectral energy concentrations. Conversely, the ZCR of
musical signals remains stable over a long period of
time.

The short-term energy is the root-mean-square
value of the waveform in a given data window and is a
representation of the time function that envelopes the
signal. It is not only the numerical value that is
important, but also the change in the value over time.
This option can provide insight into the content and
characteristics of the fundamental signal. It looks like
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The energy in a particular frequency range of a
signal spectrum can be determined by adding the
weighted sum of the power spectrum values in that
range:
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where is W[k]a weighting function with non-zero
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values in the finite range of indices “ “, corresponding
to the frequency line. Sharp changes in energy in a
musical group indicate a change in tonal composition
and help to separate the sound into distinct parts.
Typically, these instantaneous changes in energy serve
to enhance the projection of the music and emphasize
the perceived differences between different segments.

The spectral centroid is the center of gravity of the
magnitude spectrum. It serves as a useful metric for
analyzing the shape of the spectrum, the center
frequency of the spectrum being higher when there is
more high-frequency content

> 2 |x, k]|

C, === (5)
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Directing the main concentration of signal energy
towards higher frequencies results in a brighter sound,
and therefore the spectral centroid is closely related to
the subjective perception of the brightness of the sound.
The fundamental frequency is defined as the periodicity
of a waveform in the time domain. It can also be
determined by analyzing the spectrum of the signal,
which can reveal the frequency of the first harmonic or
the spacing between harmonics of a periodic signal.
However, when it comes to real musical instruments
and human voices, estimating the fundamental
frequency is difficult because of the variations in the
waveform from one period to the next, and because the
fundamental frequency can be weaker than other
harmonics. This can cause errors in determining the
period, such as doubling or halving the actual value.
The autocorrelation function (ACF) of a signal can be
used to estimate the periodicity:

ACF :%NZ( [n]xr[n+r]). (6)

The autocorrelation function (ACF) exhibits peaks
at local maxima during its peak period and its multiples.
The fundamental frequency of a signal can be
determined by taking the reciprocal of the delay "7 "
corresponding to the highest peak in a given range.
Using shorter time delays instead of longer ones is
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beneficial because it helps prevent multiple fundamental
frequencies. The harmonic coefficient is represented as
a normalized value of the delay over a calculation
period and indicates the strength of the periodicity of
the signal.

The ability of a person to recognize a sound
depends on how the sound is perceived. If there is no
existing model for the sound source, perceptual
attributes can be used instead to classify and segment it.
There are three main perceptual attributes of sound:
loudness, pitch, and timbre. Loudness and pitch can be
adjusted to make sounds louder or softer, but timbre is a
more complex concept that helps distinguish between
sounds of the same loudness and pitch. To obtain
numerical representations of short-term perceptual
parameters, a computational model of the auditory
system is used to analyze the shape of the sound.
Loudness and pitch, along with their changes over time,
are important aspects of perception [3].

Loudness is a measure of how strong a sound
signal is perceived to be, and is influenced by various
factors, including sound intensity, duration, and
spectrum. The physiological basis of perceived loudness
is determined by the overall activity of the auditory
nerve evoked by sound. Loudness models also take into
account the frequency dependence of loudness and how
loudness can be additive for different sound components
that are separated by their spectrum. Although pitch is a
perceptual attribute, it is closely related to the physical
characteristic of the fundamental frequency. The way
humans perceive pitch is related to the logarithmic
representation of the fundamental frequency, which
means that a sequential change in pitch in music is
actually a sequential ratio of the fundamental
frequencies. Most pitch detection algorithms work by
extracting the fundamental frequency from an acoustic
signal by measuring the periodicity of certain temporal
features or detecting the harmonic structure of the
spectrum. Just as physical characteristics provide
important information for identifying objects, changes
in pitch.

Loudness is a measure of the perceived loudness
of a sound signal and is influenced by a variety of
factors, including sound intensity, duration, and
spectrum. The physiological basis of perceived loudness
is determined by the overall activity of the auditory
nerve evoked by the sound. Loudness models also take
into account the frequency dependence of loudness and
how loudness can be additive across different sound
components that are separated by their spectrum.
Although pitch is a perceptual attribute, it is closely
related to the physical characteristic of the fundamental
frequency. The way humans perceive pitch is related to
the logarithmic representation of the fundamental
frequency, meaning that a sequential change in pitch in
music is actually a sequential ratio of the fundamental
frequencies. Most pitch detection algorithms work by
extracting the fundamental frequency from an acoustic
signal by measuring the periodicity of certain temporal
features or by detecting the harmonic structure of the
spectrum. Just as physical characteristics provide

important information for identifying objects, changes
in pitch and loudness over time can also provide clues
for recognizing sound sources and determining the
consistency of sound over a certain duration. By
analyzing the energy levels of certain frequency bands
in an audio signal, for example, filtered through gamma
filters, we can determine the roughness of the sound and
the speed of speech syllables. The multimedia space is
largely dominated by speech and music, which are the
main areas of interest for humans. To effectively
classify sounds, it is important to develop a set of
features that correspond to the intended sound
categories. These features can be selected based on
knowledge of the unique characteristics of the sound,
either from a production or perception perspective, or
through exhaustive comparative evaluations.

After feature extraction, standard machine learning
techniques are used to develop a classifier, such as &
nearest neighbor, Gaussian classifier, Gaussian mixture
model (GMM) classifier, or neural networks. A
significant amount of time is spent collecting and
preparing training data, focusing on ensuring that the
range of sounds in the training set reflects the size of the
sound category. For example, the category of car horns
will include a variety of car horns that sound for
different durations and in rapid succession. The model
extraction algorithm adapts to the size of the data, i.e. a
narrower range of examples yields a more specialized
classifier.

Let’s look at the components of a neural network.
The fundamental component of a neural network is a
computational unit that can process a set of real
numbers as input data and, by performing certain
calculations, produce output data. A neural unit is
essentially a mathematical function that calculates a
weighted sum of the input data, including a bias. Each
unit has a unique set of weights and biases that
correspond to its inputs. This weighted sum, also known
as , can be expressed as the sum of the inputs multiplied
by their respective weights, plus the bias

N
z=b+2wixi, (7
i=1

where x; is the set of inputs, w;is the set of weights, and
b is the bias.

We can use a weight vector w, a scalar shift a, and
an input vector to represent a. For convenience, we can
replace the sum with a dot product:

z=w*x+b. )

In neural networks, instead of using a linear
function x as the output signal, neural units apply a f
nonlinear function to z . This resulting output is called
the unit activation value, denoted by a. Since we are
only considering a single unit, the activation of a node is
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essentially the final output of the network, which is
called: y:y=a=f(z).
We obtain the sigmoid activation function.

This function has certain advantages: it is
differentiable and the output data is in the range [0, l] :

1
©)
1+e

To obtain the neural unit, we substitute equation
(8) into equation (9):

y=o0(z)=

1
1+e—(w*x+b) ’

(10)

yza(w*x—i—b):

We obtain a diagram that reflects the final
representation of the basic neural unit. This particular
block takes three input values x;, x,, x;and calculates a

weighted sum by multiplying each input value by the
corresponding weight (w,, w,, w;). The resulting

values are then added to the bias neuron b . Finally, this
sum is processed using a sigmoid function, which
generates a number in the range from 0 to 1. Although
the sigmoid function can be used as an activation
function, in practice it is not used. Instead, it is
recommended to use the function tanh , which is very
similar to the sigmoid, but often performs better. It is
essentially a variant of the sigmoid function, but has a
range from —1to +1:

== (11

ee+e’

The rectified linear unit is the most common
activation function in machine learning. It is the
simplest of the activation functions, taking the value x,
when x greater than 0, and zero otherwise:

y =max(x,0). (12)

Activation functions exhibit a variety of
characteristics that make them suitable for various
language applications and network architectures. For
example, the smooth differentiability of the function
tanh and the mapping of unique values to the average
make it a desirable option. Conversely, the properties
ReLU make it nearly linear. The functions are sigmoid
and tanh approach the value 1, when the values z are
extremely high, resulting in derivatives close to zero.
This creates training difficulties because the error signal
gradually becomes too small to be used in training, a
problem called the vanishing gradient problem. ReLU
do not face this problem, since their derivative for high
values is approximately equal to unity and is not very
close to zero.
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3. Consider convolutional neural networks
(CNNs)

They are a type of neural network specifically
designed to process input images. Despite sharing
characteristics with simple neural networks, CNNs have
a more specific architecture that consists of two main
blocks.

The first block is what distinguishes this type of
neural network, as it functions as a feature extractor,
performing pattern matching using convolution filtering
operations. This initial layer filters the image using
several convolution kernels and creates “feature maps”
that are then normalized and/or transformed using an
activation function. This process can be repeated several
times, with each iteration filtering the feature maps
obtained from the previous iteration, resulting in the
new feature maps being modified and normalized. This
process can continue until the values of the last union
maps are combined into a vector that defines the output
of the first block and serves as the input for the second
block.

The second block is located at the end of all neural
networks used for classification. The input vector values
are subjected to numerous linear combinations and
activation functions to obtain a new output vector. This
resulting vector contains elements equivalent to the
number of classes, with each element representing the
probability that the image belongs to a particular class.
The values of these probabilities range from to , and
their sum is .

The layer parameters are determined by gradient
backpropagation, where the cross-entropy is minimized
during the training phase. In CNN, these parameters are
closely related to the characteristics of the image. A
convolutional neural network consists of four different
layers, namely the convolutional layer, the pooling
layer, the correction ReLU layer, and the full-linking
layer.

The convolutional layer is a key element of
convolutional neural networks and serves as the initial
layer. Its main purpose is to identify a specific set of
features in the input images using convolutional
filtering. To do this, a window representing the object is
moved across the image, and the convolution product is
calculated between the object and each part of the
scanned image. This feature is then considered a filter,
making the two terms interchangeable. Finally, the
convolutional layer takes multiple images as input and
performs a convolution on each of them using each
filter. The pooling layer, which is usually placed
between two convolutional layers, serves to create
multiple feature maps and merge them together using a
reduction process that preserves their important
features. This involves dividing the image into regular
cells and storing the maximum value in each cell, often
using small square cells to retain as much information
as possible. This process results in a smaller output size
while maintaining the same number of feature maps,
which ultimately improves the network’s efficiency and
prevents overtraining. The last layer in any neural
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network is the full-connection layer, which takes the
input vector and creates a new output vector.

This is done by applying a linear combination and
possibly an activation function to the input values. The
last layer is responsible for classification. It returns a
vector that indicates the probability that the input image
belongs to a particular class. The input table created by
the previous layer represents a feature map for a
particular object, with high values indicating the
location of the object in the image (with varying degrees
of accuracy depending on the association). If the
location of the object at a certain point in the image
indicates a certain class, then the corresponding value in
the table is assigned the appropriate weight. When using
CNN:s to identify audio samples, the input data must be
organized into multiple feature maps, which are then fed
into the CNN. This concept is borrowed from image
processing applications, where it makes sense to
organize the input as a two-dimensional array of pixel
values with horizontal and vertical coordinates.

Full weight distribution implies using the same
weights at each window position. Convolutional neural
networks (CNNs) are often called local because the
computations at each window location depend on the
features of the neighboring image region. In our context,
the input “image” can be thought of as a spectrogram
with static, delta, and delta-delta functions, which can
be represented as red, green, and blue channels. After
creating input feature maps, the convolution and pooling
layers apply their respective operations to sequentially
create unit activations. The convolution level of units
and associations can also be organized into maps,
similar to the input layer. In CNN terminology, a pair of
consecutive convolution and pooling layers is
considered a single CNN layer. Thus, a deep CNN
involves a sequence of two or more pairs of layers.

In the convolution layer, several feature maps are
associated with each input feature map by a set of local

weight  matrices w, ; (i=1...1; j=1,..J). This
mapping is achieved by the convolution process, which
is a common operation in signal processing. If we
assume that all input feature maps Oi(i =1..,1 ) are

one-dimensional, we can calculate the value of each unit
in the feature map Q;(j=1,...,J)of the convolution

layer by using a special formula:

Qim = G(Zleznpzloi,mm—lwi,/,n +W0,i)7 (] =1..., ']) (13)

where o,

,m
element, is the unit of the ith feature map in the
convolution layer, is the element of the weight vector
that connects the map of the ith input object to the ith
element of the map of the convolution layer. Equation
(13) can be written in matrix form:

is the m—unit of the map of the ith input

9, :U(Z,;Oi *w ) (=10 J), (14)

where O; defines the i—th input feature map, w; ;is

ij
the local inverted weight matrix to match the definition
of the convolution operation. and are vectors if the maps
are one-dimensional, O, and w; ;are matrices if the

maps are two-dimensional.

The merging path of the layers is also organized in
feature maps, which have the same number of feature
maps as its convolutional layers, but each map is
smaller. The purpose of the merging layer is to reduce
the resolution of the feature map. This means that the
units of this layer will act as generalizations of the
features of the lower convolutional layer, and since
these generalizations will again be spatially localized in
frequency, they will also be invariant to small changes
in location. This reduction is achieved by applying a
merging function to a few cells in a local region of size
defined by a parameter called the merging size [4-7].
This is usually a simple function, such as maximization
or averaging. The merging function is applied
independently to each convolutional feature map. For
the maximum merging function, the average merging
level is defined as follows, respectively:

(15)

piy = max qi,(m—l)*ﬁn ’
n=l1

G
pi,m = r2i=1qi,(m—1)*s+n’ (16)

where Gis the merging size s, and the shift size
determines the overlap of adjacent merging windows; »
— scaling factor. If the merge windows do not overlap
and there are no gaps between them, then maximum
merge works better.

Consider the issue of learning weights in
convolutional neural networks. The weights in the
convolution layer can be learned using the error
backpropagation algorithm, but special adjustments are
required to account for sparse connections and weight
distribution [8-12]. To demonstrate the learning
algorithm for CNN layers, we present the convolution
operation in the same mathematical form as the full
connected ANN layer. This will allow the same learning
algorithm to be applied in the same way. If one-
dimensional feature maps are used, the convolution
operations in equation (14) can be expressed as a basic
matrix multiplication by introducing a large sparse
weight matrix W . This matrix is created by multiplying
the basic weight matrix:

Wil W1
W = : : , (17

w w
11,F 1.J.F Jpspsy

where W consists of I"F rows, where Fis the size of
the filter, each 7 row contains [/ rows for the input
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feature maps, and W has J columns representing the
weights of the feature J maps in the convolution layer.

The input data maps and the convolution functions

are vectorized as vectors oand ¢. A vector row is

created from the input function maps O, (i =1...,1 ) :

(18)

0:[v1|v2|...|vM},

where v,, is the row vector, with the values of the

m—th frequency range on all function maps, / and M
is the number of frequency bands of the input layer. The
convolution results calculated in (14) can be expressed
as

qg=0 (OW ) (19)
Equation (19) has the mathematical form of a full-
connection layer, so the weights of the convolution
layer can be wupdated using the backpropagation
algorithm. The W looks like:
W =c*o. (20)
In addition, the error vector can be calculated
using the same method or passed to the lower layer

using a matrix W containing sparse values. In addition,
the bias problem can be solved by including an
additional row in the matrix that stores the bias values
and reproduces them on all bands of the convolutional
layers. In addition, we can also add an element to the

vector owith a value of one to handle the bias. The
pooling layer does not need to be trained because it has
no weights. However, it is necessary to pass error
signals to the lower layers through the pooling function.
With maximum pooling, for example, the error signal is
passed only to the most active block, which is the
largest in the group of pooled blocks [13-15]. Therefore,
to calculate the error signal that is sent back to the lower
convolution layer, the error signal:

e =Zel-’m*5(ui,m+(m—1)*s—n), (1)

where O (x) is the delta function, 1has the value , if
x =0, otherwise zero, and u, ,, is the index of the unit

with the maximum value among the combined units and
is defined as:

(22)

l/ll-’m =arg I’IilaX qi,(m—l)*s+n .
n=

4. Discussion of results

The research analyzed various aspects of audio
signal processing, in particular for the purpose of their
further classification and speech recognition. The main
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attention was paid to the use of neural networks as a
promising tool for solving these problems. The study of
statistical and physical methods of working with audio
signals allowed to form a basic understanding of their
characteristics and methods of representation, such as
time-frequency images. This became the starting point
for the further development of more complex systems
based on machine learning. In particular, the principles
of functioning of neural networks and methods of their
adaptation for audio recognition were investigated,
which confirmed their effectiveness in this direction.

Despite the general effectiveness of neural
networks, a significant problem was identified regarding
their application to the Ukrainian language. The limited
number of available models and training sets for the
Ukrainian language creates serious obstacles to the
creation of high-quality recognition systems. This
deficit contrasts with the large number of resources
available for the English language, which emphasizes
the need for additional research and development in this
direction. Overcoming this barrier is key to further
implementing ~ Ukrainian ~ language  recognition
technologies in everyday life, for example, in voice
search or dictation systems.

In summary, the results of the work confirm that
neural networks are a powerful tool for speech
recognition, in particular, for analyzing audio signals.
We managed to find effective models and tools for their
training, which lays the foundation for future research.
However, in order to fully realize the potential of these
technologies for the Ukrainian language, it is necessary
to expand the base of available models and training
data. This opens up a wide field for further scientific
developments aimed at creating effective, reliable and
accessible Ukrainian language recognition systems.

5. Conclusions

The main methods of audio signal processing were
studied, mainly from the point of view of sound
classification. The general characteristics of sound
signals were considered, followed by a description of
time-frequency images for sound. Attributes useful for
classification were reviewed. Neural networks, the
principle of their operation and methods of audio
recognition using them were described. The audio
signal, its representation, statistical and physical
methods of working with it were studied. Effective
models for correct recognition of the Ukrainian
language and toolkits for training the model were found.

A dataset consisting of more than minutes of audio
containing spoken and literary Ukrainian was created,
using this dataset a linguistic model was compiled.
Software was created that has an interface for ease of
use.

To evaluate the result obtained, a comparison was
made with existing solutions that allow recognizing the
Ukrainian language in real time. It can be noted that the
created software can compete with existing solutions, as
it has its advantages, but loses in accuracy when there
are a large number of words in a sentence for
recognition, so there is a need to improve it.
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IH®OPMAIIIAHI TEXHOJIOI'TI HEHPOMEPEXXEBOI'O PO3MI3HABAHHS MOBJIEHHSA B PEXKAMI
PEAJIBHOI'O YACY

L. B. Ceparok, O. B. Tonina, O. A. I'exsipoBcerka, O. B. SITHOBChKMi

AHoTanisi. AKTyaabHiCTh. B Hall yac € akTyalbHUM JOCIiIPKCHHS! OCHOBHHX 32c00iB 00pOOKH ay1i0CUTHAITY, IEPEBAXKHO
3 TOUKH 30py Kiacuikamii 3ByKy Ta MiaX0oau 0 IX YAOCKOHaJIeHHs. PO3IIIsIHYTO 3arajbHi XapaKTepHUCTHKH 3BYKOBUX CHTHAIIIB 3
HACTYIIHUM OIMCOM YacTOTHO-9aCOBHX 300paXkeHb IS 3ByKa Ta NEeperisHyTi aTpuOyTH, KOpUCHI At kiacudikarii. Jlroncekuit
CIIyX — Ile HeHMOBIpHUH IHCTPYMEHT, SIKMH Jae HaMm Oararo iHdopmarii mpo HaBKOJMIIHII CBIT. MU JIerKO BJIOBIIIOEMO 3BYKH
NTaxiB, 3BYKH MAallMH Ha BiJCTaHI Ta HAaBITh CKIagHI My3uuHi kommnosumii. IIpeaMeTrom NOCHiIKeHHS1 B CTAaTTi € CIyXOBa
cucTeMa JIFOIMHM, IO 37aTHa 0OpOoOIATH BCIO 110 iH(OpMaIlifo, aHATI3YI0UH Ta TPYIyIOUX pi3Hi 3ByKH. Lleit mpouec BigoMuii sk
aHaJi3 cyxoBoi creHu. Taki mporpamu, ik po3Mi3HaBaHHA MOBJICHHS, TPAHCKPUIILIS MYy3UKH Ta IMOIIYK MyJIbTUMEIIHHAX JaHUX,
MOJKHA 3HAYHO BJOCKOHAIMTH 3a JOIIOMOTOI0 PO3IUICHHS Ta Kiacudikamii mkepen 3ByKy. OOpodka mudpoBoro ayaiocuraary
Ma€ psil BOXINBHUX 3aCTOCYBaHb, TAKUX SIK CTUCHEHHS ayJI0flaHNX, CHHTE3 3BYKOBHX e(eKTiB 1 kiacudikaris 3BykiB. B Hanr gac
kiacuikaiis 3ByKy crae Bce OUIBII BasKJIMBOIO, OCKIJIBKM CTBOPIOETHCS Bce Ounple i Oinbplre MynbTHMeniitHoro Bmicty. Lle
0CcOOJIMBO KOPUCHO, KOJIM HAETHCS MO IOIIYK CEepei ayAioBi3yalbHHX MarepiajliB, OCKUIBKH IIPOCIYXOBYBAaHHS ayAiOKIIIiB
Moxe OyTH OuTbII edeKTHBHHM CcrmocoOOM HaBiramii, HiX meperisiy BimeocueH. Kiacnmgikamito 3ByKy TakoX MOXKHA
BUKOPHUCTOBYBATH SIK iHTep(eiiC 11 CTUCHEHHS ayZi0, OCKUTBKH Pi3HI TUIH 3BYKiB, Taki sSIK My3HKa Ta MOBa, IOTPEOYIOTh PI3HUX
METOAIB CTHCHEHHS. MeTo10 1aHOi po0OTH € TOCTIHKEHHS MiAXOMIB 0 CTBOPEHHS CHCTEM HEWPOMEPEKEBOTO PO3Ii3HABAHHS
MOBIICHHS. Po3mi3HaBaHHA MOBIICHHS B pPEAIFHOMY Yaci CTalo HEWMOBIPHO KOPHUCHHM IHCTPYMEHTOM [UI BHPIIICHHS
pi3HOMaHITHUX TpobieM y pi3HMX cdepax KHUTTA. 3apa3 0araro KOMIIAHIH NPOIMOHYIOTH NPOTpaMHE 3a0e3MEeYCHHS Ui
JUKTYBaHHS, SIK€ JI03BOJISIE JIIOASM CTBOPIOBATH MOIIYKOBI 3aITUTH a00 JMKTYBAaTH €IEKTPOHHI JIMCTH 3a IONMOMOTI'OI0 TOJIOCOBUX
koMaHJ. JIOUiTbHUM € pOo3MJis] HEHpOMEpEe)KEeBOrO pO3IMi3HABAaHHS MOBH, 30KpeMa, yKpaiHchkoi. OnHI€0 3 HaWOUIBIINX
po0JieM, 3 SIKUMH CTHKA€ThCS aHaJI3 YKPalHChKOTO MOBJIEHHSI, € OOME)KeHa KUIbKICTh MOJIeNeil, JOCTYIHUX AJIS PO3Ii3HaBaHHSI.
SIkmio ays aHrmifickkoi € 6arato Mojenei, To At yKpalHChKOT — X 30BCiM Maio. 3aranoM HOTeHILiiHI mepeBaru 00poOKu 3BYKy
Ta PO3Ii3HABaHHS MOBJICHHS OYEBHU/IHI, i LIIKOM iIMOBIPHO, 1[0 MH NPOJIOBXKYBaTHMEMO 0AauUTH HOBI po3poOKu B IUX cdepax y
MaitbytHpoMy. OmmcaHi HeWpomepeki, MPUHIMI iX poOOTH Ta CrocoOW pO3Mi3HAaBaHHSA aylio 3a OMOMOrol HHX. ByJio
OTPUMAHO TaKi pe3yJIbTaTH: JOCIIHKEHO ayIiOCHTHAJ, HOTO MpPEeACTaBICHHS, CTATUCTUYHI Ta (Di3HMYHI METOIU POOOTH 3 HUM.
BucHoBok. 3HaiiieHO e(eKTHBHI MOJENI Il KOPEKTHOTO PO3Ii3HABaHHSI MOBH Ta TYJIKITH JJIsl HABYaHHS MOJIEIT.

KorouoBi ciioBa: HeiipoHHI Mepexi, 00poOKa ayaiocurHaiy, 3ropTKoBa HelpoMepeka, relTalbT-rpyIyBaHHs, KOXJieapHa
MO/IETb, TaTaceT.
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