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Abstract. Relevance. Nowadays, it is relevant to study the basic means of audio signal processing, mainly from the point 

of view of sound classification and approaches to their improvement. The general characteristics of sound signals are considered, 

followed by a description of the time-frequency images for sound and the attributes useful for classification are reviewed. Human 

hearing is an incredible tool that gives us a lot of information about the world around us. We easily catch the sounds of birds, the 

sounds of cars at a distance, and even complex musical compositions. The subject of the study in the article is the human 

auditory system, which is able to process all this information, analyzing and grouping different sounds. This process is known as 

auditory scene analysis. Applications such as speech recognition, music transcription, and multimedia data retrieval can be 

greatly improved by separating and classifying sound sources. Digital audio signal processing has a number of important 

applications, such as audio compression, sound effect synthesis, and sound classification. Sound classification is becoming 

increasingly important as more and more multimedia content is created. This is especially useful when it comes to searching 

through audiovisual materials, as listening to audio clips can be a more efficient way to navigate than watching video scenes. 

Sound classification can also be used as an interface for audio compression, as different types of sounds, such as music and 

speech, require different compression methods. The purpose of this work is to explore approaches to building neural network 

speech recognition systems. Real-time speech recognition has become an incredibly useful tool for solving a variety of problems 

in different areas of life. Many companies now offer dictation software that allows people to create search queries or dictate 

emails using voice commands. It is appropriate to consider neural network speech recognition, in particular, Ukrainian. One of 

the biggest problems faced by the analysis of Ukrainian speech is the limited number of models available for recognition. While 

there are many models for English, there are very few for Ukrainian. In general, the potential benefits of sound processing and 

speech recognition are obvious, and it is quite likely that we will continue to see new developments in these areas in the future. 

Neural networks are described, the principle of their operation and methods of audio recognition using them. The following 

results were obtained: the audio signal, its representation, statistical and physical methods of working with it were studied. 

Conclusion. Effective models for correct speech recognition and toolkits for model training were found. 

Keywords: neural networks, audio signal processing, convolutional neural network, gestalt grouping, cochlear 

model,dataset

 

Introduction 

When the air pressure on the eardrum changes, a 

sound wave is produced, and some of the properties of 

the sound can be seen in a time-frequency diagram that 

can help identify its different sources. This definition is 

based on the Gestalt grouping rules [1], which can also 

be used to help machines classify and separate sounds. 

Humans first analyze sound by its frequency, so a time-

frequency representation of sound is a useful tool. There 

are two main ways to visually represent sound: 

spectrograms and auditory imagery. A spectrogram uses 

the Fourier transform to analyze the signal, while 

auditory imagery highlights the most important features 

based on how humans perceive the sound. Acoustic 

signal analysis involves using the Fourier transform to 

create two real-world frequency functions, known as the 

amplitude spectrum and the phase spectrum. To track 

changes in the signal over time, Fourier transform 

spectra of overlapping window segments are calculated 

at short, successive intervals. However, the phase 

spectrum is not considered as sensitively as the 

magnitude or power spectrum. From the effective value 

spectra, a spectrogram is obtained, which provides a 

graphical representation of the frequency-time content 

of the signal. 

The auditory representation is usually created by 

computing an auditory model that captures the physical  

 

 

quantity at a certain point in the auditory pathway. 

Computational models of hearing simulate the functions  

of the outer, middle, and inner ears, which work 

together to transform acoustic energy into neural code in 

the auditory nerve. These models approximate different 

stages of auditory processing and are intended to 

explain the results of psychoacoustic experiments. For 

example, cochlear models simulate how the basilar 

membrane filters sound and how this activity is 

translated into neural activation along the pinna. 

Various models have been proposed over time, but the 

cochlear model, which combines sound intensities in 

different frequency ranges using critical bandpass 

filters, is popular. These filters correspond to different 

cochlear channels, which are processed independently 

of each other at higher levels of the auditory pathway. 

The cochlear model creates an “auditory image” that is 

the basis of cognitive functions in the brain. 

Psychoacoustic observations show that the subjective 

sensations of spectral components entering the cochlear 

canal differ from those entering the individual channels 

1. Mathematical statement of the problem 

The human ear can hear sounds with frequencies from 

20 Hz to 20 GHz, as long as they do not exceed the 

"threshold of hearing". The range of sound intensity is 

enormous (approximately 120 dB): from the noise of 

rustling leaves to the noise of an airplane taking off. A 

digital audio signal is obtained by sampling and 
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quantizing the electrical output of a microphone with a 

sampling frequency of 44100 Hz, which is commonly 

used. Sounds can be classified into different categories, 

such as environmental sounds, artificial sounds, speech 

and music, etc. Sound events can be described by their 

temporal and spectral properties. Examples of atomic 

sound events include short sounds, such as a door 

slamming, and longer, uniform, textured sounds, such as 

continuous rain. Temporal properties refer to the 

duration of the sound and its amplitude modulations, 

while spectral properties refer to its frequency 

components and their relative strengths. 

Audio signals are complex and diverse, with both 

spectral and temporal properties affecting their 

perceptual quality. Representing audio signals requires a 

joint consideration of both aspects, and short-term 

analysis is commonly used to estimate signal 

parameters. Various models can be used to approximate 

audio signals, such as the source-filter model for speech 

signals and the sum of elementary components for 

music. Audio signals are physical stimuli that are 

processed by the auditory system to evoke 

psychological sensations in the brain. Perceptual 

characteristics such as pitch, loudness, subjective 

duration, and timbre have been studied since Helmholtz 

in 1870. These sensations are correlated with various 

spectral and temporal properties of sound, and it is 

important to consider both when representing audio 

signals. Short-term analysis is commonly used to 

estimate signal parameters or features that relate to the 

underlying signal model. For example, speech signals 

can be approximated using the source-filter model, 

while music is modeled as a sum of elementary 

components. 

Audio signals can be periodic or aperiodic. 

Periodic waveforms are more complex, consisting of a 

fundamental frequency and a series of overtones, while 

aperiodic waveforms can contain inharmoniously 

related sinusoidal tones or a frequency noise waveform. 

Different amplitudes and phases of the frequency 

components can affect the overall “color” or timbre of 

the sound. This is important in speech, where tonal and 

noise regions alternate according to vowel segments, 

and in music, where the fundamental frequency and 

duration can vary greatly. It is useful to study the basic 

means of audio signal processing, mainly from the 

perspective of sound classification, to consider the 

general characteristics of audio signals, followed by a 

description of time-frequency representations for sound, 

as well as attributes useful for classification [1,2]. 

It is necessary to describe the neural networks that 

are proposed to be used, their principles of operation 

and methods of audio recognition with their help and to 

study the audio signal, its representation, statistical and 

physical methods of working with it. The use of 

convolutional neural networks, their principles of 

operation and features are proposed. It is necessary to 

consider the use of convolutional networks for audio 

recognition. 

 

2. Mathematical model and methods for solving 

the problem 

On the time-frequency diagram, you can see the 

properties of sound, which can help to identify its 

different sources. This is based on the Gestalt grouping 

rules that are used to help classify and separate sounds. 

People first analyze sound by its frequency, so the time-

frequency representation is a useful tool. There are two 

main ways to visually represent sound: spectrogram and 

auditory image. The spectrogram uses the Fourier 

transform to analyze the signal, while the auditory 

image highlights the most important characteristics 

based on how people perceive sound. Acoustic signal 

analysis involves using the Fourier transform to create 

two real-world frequency functions, known as the 

amplitude spectrum and the phase spectrum. To track 

changes in the signal over time, Fourier transform 

spectra of overlapping window segments are calculated 

at short successive intervals. However, the phase 

spectrum is not considered as sensitively as the 

magnitude or power spectrum. From the rms spectra, a 

spectrogram is obtained, which provides a graphical 

representation of the frequency-time content of the 

signal. 

We have considered how to visually represent 

audio content using spectrograms and audio signals. 

However, these representations also have many 

dimensions, which makes them difficult to use for 

classification. Ideally, we want to extract low-

dimensional features from these images or from the 

audio signal itself that highlight important differences 

between different types of audios. The international 

standard for describing audiovisual content, MPEG-7, 

which is the standard for describing audiovisual content, 

proposes the use of transformed spectral vectors that are 

reduced in dimension and decorrelated. A very common 

method for feature development is to have a complete 

understanding of the defining features of a signal from 

both its production and perception perspectives. The 

goal is to identify features that remain unchanged 

despite irrelevant changes. Feature extraction is an 

important aspect of signal processing that involves 

transforming an audio signal into a numerical 

representation that describes a particular audio segment. 

Machine learning algorithms often use input data to 

partition the feature space into regions, with each region 

corresponding to a specific class. A comprehensive set 

of features carefully designed for a specific audio 

classification task can effectively classify audio signals 

with a sufficient amount of training data. This is a 

smaller component of the larger task of auditory scene 

analysis. When an audio stream consists of many 

different events from different classes that do not occur 

simultaneously, splitting the stream into separate events 

for each class can be achieved by monitoring changes in 

the values of features typical of the segment boundaries. 

However, if signals from different sources overlap in 

time, it becomes much more difficult to separate the 

streams. Research into sound categorization has led to 

the development of a vast collection of computational 

features. These features can be broadly grouped into 
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two categories: physical and perceptual. Physical 

features are directly related to measurable properties of 

an audio signal and are independent of human 

perception, but perceptual features are subjective and 

require precise computation using auditory models. 

These features can be classified as static or dynamic. 

Static features refer to features of an audio signal that 

can be captured at a specific point in time by analyzing 

a short segment of data. In essence, they provide a 

snapshot of the properties of the signal at a given point 

in time. Representing static features over a longer 

period of time leads to better classification. Typically, 

the time window lasts from 500 milliseconds to 1 

seconds. This duration defines the delay to 1 seconds in 

the task of identifying or categorizing sounds. Physical 

features refer to signal parameters that capture specific 

characteristics of an audio signal in terms of time or 

frequency. Although some of these features may be 

perceptually determined, they are still considered 

physical features because they originate from the 

amplitudes of the audio signal or its short-term spectral 

values. Let us consider some of the most commonly 

used physical features. In the equations above, the 

subscript “ ” indicates the current window, which is the 

sample of the data segment  rx n of length N. 

Then, for window analysis, we have:  

 

              

1 1

r rx n X k f k

n N k N

   
→   

=  =    
 (1) 

 

The zero-crossing rate (ZCR) is a quantity that 

determines the number of times a signal crosses the zero 

axis during a certain time interval, in our case within a 

certain frame. It is defined as 

 

. ( )( ) ( )( )1

1

1
|,

2

N

r r r

n

ZCR sign x n sign x n−

=

= −  (2) 

where ( )
1,  0;

1,  0.

x
sign x

x


= 

− 
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In the case of narrowband signals such as a sine 

wave, the ZCR corresponds directly to the fundamental 

frequency. However, for more complex signals, the 

ZCR is closely related to the average frequency of the 

energy concentration. In the case of linguistic signals, 

the short-term ZCR fluctuates rapidly between the 

voiced and unvoiced segments due to the different 

spectral energy concentrations. Conversely, the ZCR of 

musical signals remains stable over a long period of 

time. 

The short-term energy is the root-mean-square 

value of the waveform in a given data window and is a 

representation of the time function that envelopes the 

signal. It is not only the numerical value that is 

important, but also the change in the value over time. 

This option can provide insight into the content and 

characteristics of the fundamental signal. It looks like 

 

( )
2

1

1 N

r r

n

E x n
N =

=     (3) 

 

The energy in a particular frequency range of a 

signal spectrum can be determined by adding the 

weighted sum of the power spectrum values in that 

range: 

   ( )
2

2

1

1
,

N

r r

n

Es X k W k
N =

=    (4) 

 

where is  W k a weighting function with non-zero 

values in the finite range of indices “ “, corresponding 

to the frequency line. Sharp changes in energy in a 

musical group indicate a change in tonal composition 

and help to separate the sound into distinct parts. 

Typically, these instantaneous changes in energy serve 

to enhance the projection of the music and emphasize 

the perceived differences between different segments. 

The spectral centroid is the center of gravity of the 

magnitude spectrum. It serves as a useful metric for 

analyzing the shape of the spectrum, the center 

frequency of the spectrum being higher when there is 

more high-frequency content 
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   (5) 

 

Directing the main concentration of signal energy 

towards higher frequencies results in a brighter sound, 

and therefore the spectral centroid is closely related to 

the subjective perception of the brightness of the sound. 

The fundamental frequency is defined as the periodicity 

of a waveform in the time domain. It can also be 

determined by analyzing the spectrum of the signal, 

which can reveal the frequency of the first harmonic or 

the spacing between harmonics of a periodic signal. 

However, when it comes to real musical instruments 

and human voices, estimating the fundamental 

frequency is difficult because of the variations in the 

waveform from one period to the next, and because the 

fundamental frequency can be weaker than other 

harmonics. This can cause errors in determining the 

period, such as doubling or halving the actual value. 

The autocorrelation function (ACF) of a signal can be 

used to estimate the periodicity: 

 

( )    ( )
1

0

1
.

N

r r

n

ACF x n x n r
N


−

=

= +   (6) 

 

The autocorrelation function (ACF) exhibits peaks 

at local maxima during its peak period and its multiples. 

The fundamental frequency of a signal can be 

determined by taking the reciprocal of the delay " " 

corresponding to the highest peak in a given range. 

Using shorter time delays instead of longer ones is 



ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2 

75 
 

beneficial because it helps prevent multiple fundamental 

frequencies. The harmonic coefficient is represented as 

a normalized value of the delay over a calculation 

period and indicates the strength of the periodicity of 

the signal. 

The ability of a person to recognize a sound 

depends on how the sound is perceived. If there is no 

existing model for the sound source, perceptual 

attributes can be used instead to classify and segment it. 

There are three main perceptual attributes of sound: 

loudness, pitch, and timbre. Loudness and pitch can be 

adjusted to make sounds louder or softer, but timbre is a 

more complex concept that helps distinguish between 

sounds of the same loudness and pitch. To obtain 

numerical representations of short-term perceptual 

parameters, a computational model of the auditory 

system is used to analyze the shape of the sound. 

Loudness and pitch, along with their changes over time, 

are important aspects of perception [3]. 

Loudness is a measure of how strong a sound 

signal is perceived to be, and is influenced by various 

factors, including sound intensity, duration, and 

spectrum. The physiological basis of perceived loudness 

is determined by the overall activity of the auditory 

nerve evoked by sound. Loudness models also take into 

account the frequency dependence of loudness and how 

loudness can be additive for different sound components 

that are separated by their spectrum. Although pitch is a 

perceptual attribute, it is closely related to the physical 

characteristic of the fundamental frequency. The way 

humans perceive pitch is related to the logarithmic 

representation of the fundamental frequency, which 

means that a sequential change in pitch in music is 

actually a sequential ratio of the fundamental 

frequencies. Most pitch detection algorithms work by 

extracting the fundamental frequency from an acoustic 

signal by measuring the periodicity of certain temporal 

features or detecting the harmonic structure of the 

spectrum. Just as physical characteristics provide 

important information for identifying objects, changes 

in pitch. 

Loudness is a measure of the perceived loudness 

of a sound signal and is influenced by a variety of 

factors, including sound intensity, duration, and 

spectrum. The physiological basis of perceived loudness 

is determined by the overall activity of the auditory 

nerve evoked by the sound. Loudness models also take 

into account the frequency dependence of loudness and 

how loudness can be additive across different sound 

components that are separated by their spectrum. 

Although pitch is a perceptual attribute, it is closely 

related to the physical characteristic of the fundamental 

frequency. The way humans perceive pitch is related to 

the logarithmic representation of the fundamental 

frequency, meaning that a sequential change in pitch in 

music is actually a sequential ratio of the fundamental 

frequencies. Most pitch detection algorithms work by 

extracting the fundamental frequency from an acoustic 

signal by measuring the periodicity of certain temporal 

features or by detecting the harmonic structure of the 

spectrum. Just as physical characteristics provide 

important information for identifying objects, changes 

in pitch and loudness over time can also provide clues 

for recognizing sound sources and determining the 

consistency of sound over a certain duration. By 

analyzing the energy levels of certain frequency bands 

in an audio signal, for example, filtered through gamma 

filters, we can determine the roughness of the sound and 

the speed of speech syllables. The multimedia space is 

largely dominated by speech and music, which are the 

main areas of interest for humans. To effectively 

classify sounds, it is important to develop a set of 

features that correspond to the intended sound 

categories. These features can be selected based on 

knowledge of the unique characteristics of the sound, 

either from a production or perception perspective, or 

through exhaustive comparative evaluations. 

After feature extraction, standard machine learning 

techniques are used to develop a classifier, such as k

nearest neighbor, Gaussian classifier, Gaussian mixture 

model (GMM) classifier, or neural networks. A 

significant amount of time is spent collecting and 

preparing training data, focusing on ensuring that the 

range of sounds in the training set reflects the size of the 

sound category. For example, the category of car horns 

will include a variety of car horns that sound for 

different durations and in rapid succession. The model 

extraction algorithm adapts to the size of the data, i.e. a 

narrower range of examples yields a more specialized 

classifier. 

Let’s look at the components of a neural network. 

The fundamental component of a neural network is a 

computational unit that can process a set of real 

numbers as input data and, by performing certain 

calculations, produce output data. A neural unit is 

essentially a mathematical function that calculates a 

weighted sum of the input data, including a bias. Each 

unit has a unique set of weights and biases that 

correspond to its inputs. This weighted sum, also known 

as , can be expressed as the sum of the inputs multiplied 

by their respective weights, plus the bias 

 

1

        ,
N

i i

i

z b w x
=

= +    (7) 

 

where ix is the set of inputs, iw is the set of weights, and 

 b is the bias. 

 

We can use a weight vector w, a scalar shift a, and 

an input vector to represent a. For convenience, we can 

replace the sum with a dot product: 

 

     * .z w x b= +   (8) 

 

In neural networks, instead of using a linear 

function x as the output signal, neural units apply a f

nonlinear function to z . This resulting output is called 

the unit activation value, denoted by a . Since we are 

only considering a single unit, the activation of a node is 
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essentially the final output of the network, which is 

called: y : ( ).y a f z= =  

We obtain the sigmoid activation function. 

This function has certain advantages: it is 

differentiable and the output data is in the range  0, 1 : 

 

( )
1

.
1 z

y z
e


−

= =
+

   (9) 

To obtain the neural unit, we substitute equation 

(8) into equation (9): 

 

( )
( )*

1
* .

1
w x b

y w x b
e


− +

= + =
+

   (10) 

 

We obtain a diagram that reflects the final 

representation of the basic neural unit. This particular 

block takes three input values 1 2 3,  , x x x and calculates a 

weighted sum by multiplying each input value by the 

corresponding weight ( 1 2 3,  , w w w ). The resulting 

values are then added to the bias neuron  b . Finally, this 

sum is processed using a sigmoid function, which 

generates a number in the range from 0 to 1. Although 

the sigmoid function can be used as an activation 

function, in practice it is not used. Instead, it is 

recommended to use the function tanh , which is very 

similar to the sigmoid, but often performs better. It is 

essentially a variant of the sigmoid function, but has a 

range from 1− to 1+ : 

 

.
z z

z z

e e
y

e e

−

−

−
=

+
    (11) 

 

The rectified linear unit is the most common 

activation function in machine learning. It is the 

simplest of the activation functions, taking the value x , 

when x greater than 0 , and zero otherwise: 

 

( )max , 0 .y x=     (12) 

 

Activation functions exhibit a variety of 

characteristics that make them suitable for various 

language applications and network architectures. For 

example, the smooth differentiability of the function

tanh and the mapping of unique values to the average 

make it a desirable option. Conversely, the properties 

ReLU  make it nearly linear. The functions are sigmoid 

and tanh approach the value 1, when the values z are 

extremely high, resulting in derivatives close to zero. 

This creates training difficulties because the error signal 

gradually becomes too small to be used in training, a 

problem called the vanishing gradient problem. ReLU

do not face this problem, since their derivative for high 

values is approximately equal to unity and is not very 

close to zero. 

 

3. Consider convolutional neural networks 

(CNNs) 

They are a type of neural network specifically 

designed to process input images. Despite sharing 

characteristics with simple neural networks, CNNs have 

a more specific architecture that consists of two main 

blocks. 

The first block is what distinguishes this type of 

neural network, as it functions as a feature extractor, 

performing pattern matching using convolution filtering 

operations. This initial layer filters the image using 

several convolution kernels and creates “feature maps” 

that are then normalized and/or transformed using an 

activation function. This process can be repeated several 

times, with each iteration filtering the feature maps 

obtained from the previous iteration, resulting in the 

new feature maps being modified and normalized. This 

process can continue until the values of the last union 

maps are combined into a vector that defines the output 

of the first block and serves as the input for the second 

block. 

The second block is located at the end of all neural 

networks used for classification. The input vector values 

are subjected to numerous linear combinations and 

activation functions to obtain a new output vector. This 

resulting vector contains elements equivalent to the 

number of classes, with each element representing the 

probability that the image belongs to a particular class. 

The values of these probabilities range from to , and 

their sum is . 

The layer parameters are determined by gradient 

backpropagation, where the cross-entropy is minimized 

during the training phase. In CNN, these parameters are 

closely related to the characteristics of the image. A 

convolutional neural network consists of four different 

layers, namely the convolutional layer, the pooling 

layer, the correction ReLU layer, and the full-linking 

layer. 

The convolutional layer is a key element of 

convolutional neural networks and serves as the initial 

layer. Its main purpose is to identify a specific set of 

features in the input images using convolutional 

filtering. To do this, a window representing the object is 

moved across the image, and the convolution product is 

calculated between the object and each part of the 

scanned image. This feature is then considered a filter, 

making the two terms interchangeable. Finally, the 

convolutional layer takes multiple images as input and 

performs a convolution on each of them using each 

filter. The pooling layer, which is usually placed 

between two convolutional layers, serves to create 

multiple feature maps and merge them together using a 

reduction process that preserves their important 

features. This involves dividing the image into regular 

cells and storing the maximum value in each cell, often 

using small square cells to retain as much information 

as possible. This process results in a smaller output size 

while maintaining the same number of feature maps, 

which ultimately improves the network’s efficiency and 

prevents overtraining. The last layer in any neural 
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network is the full-connection layer, which takes the 

input vector and creates a new output vector. 

This is done by applying a linear combination and 

possibly an activation function to the input values. The 

last layer is responsible for classification. It returns a 

vector that indicates the probability that the input image 

belongs to a particular class. The input table created by 

the previous layer represents a feature map for a 

particular object, with high values indicating the 

location of the object in the image (with varying degrees 

of accuracy depending on the association). If the 

location of the object at a certain point in the image 

indicates a certain class, then the corresponding value in 

the table is assigned the appropriate weight. When using 

CNNs to identify audio samples, the input data must be 

organized into multiple feature maps, which are then fed 

into the CNN. This concept is borrowed from image 

processing applications, where it makes sense to 

organize the input as a two-dimensional array of pixel 

values with horizontal and vertical coordinates. 

Full weight distribution implies using the same 

weights at each window position. Convolutional neural 

networks (CNNs) are often called local because the 

computations at each window location depend on the 

features of the neighboring image region. In our context, 

the input “image” can be thought of as a spectrogram 

with static, delta, and delta-delta functions, which can 

be represented as red, green, and blue channels. After 

creating input feature maps, the convolution and pooling 

layers apply their respective operations to sequentially 

create unit activations. The convolution level of units 

and associations can also be organized into maps, 

similar to the input layer. In CNN terminology, a pair of 

consecutive convolution and pooling layers is 

considered a single CNN layer. Thus, a deep CNN 

involves a sequence of two or more pairs of layers. 

In the convolution layer, several feature maps are 

associated with each input feature map by a set of local 

weight matrices ( ), 1, , ; 1, ,i jw i I j J=  =  . This 

mapping is achieved by the convolution process, which 

is a common operation in signal processing. If we 

assume that all input feature maps ( )1, ...,iO i I= are 

one-dimensional, we can calculate the value of each unit 

in the feature map ( )1, ...,jQ j J= of the convolution 

layer by using a special formula: 

 

( ), , 1 , , 0,1 1
( ),    1, ,  

I F

i m i n m i j n ii n
q o w w j J + −= =

= + =    (13) 

 

where ,i mo is the m−unit of the map of the ith input 

element, is the unit of the ith feature map in the 

convolution layer, is the element of the weight vector 

that connects the map of the ith input object to the ith 

element of the map of the convolution layer. Equation 

(13) can be written in matrix form: 

 

( ),1
( * ),    1, , 

I

j i i ji
Q O w j J

=
= =  ,  (14) 

 

where iO  defines the i − th input feature map, ,i jw is 

the local inverted weight matrix to match the definition 

of the convolution operation. and are vectors if the maps 

are one-dimensional, iO  and ,i jw are matrices if the 

maps are two-dimensional. 

 

The merging path of the layers is also organized in 

feature maps, which have the same number of feature 

maps as its convolutional layers, but each map is 

smaller. The purpose of the merging layer is to reduce 

the resolution of the feature map. This means that the 

units of this layer will act as generalizations of the 

features of the lower convolutional layer, and since 

these generalizations will again be spatially localized in 

frequency, they will also be invariant to small changes 

in location. This reduction is achieved by applying a 

merging function to a few cells in a local region of size 

defined by a parameter called the merging size [4-7]. 

This is usually a simple function, such as maximization 

or averaging. The merging function is applied 

independently to each convolutional feature map. For 

the maximum merging function, the average merging 

level is defined as follows, respectively: 

 

( ), , 1 *
1

max ,i m i m s n
n

p q − +
=

=    (15) 

 

( ), , 1 *1
  ,

G

i m i m s ni
p r q − +=

=     (16) 

 

where G is the merging size s , and the shift size 

determines the overlap of adjacent merging windows; r
– scaling factor. If the merge windows do not overlap 

and there are no gaps between them, then maximum 

merge works better. 

 

Consider the issue of learning weights in 

convolutional neural networks. The weights in the 

convolution layer can be learned using the error 

backpropagation algorithm, but special adjustments are 

required to account for sparse connections and weight 

distribution [8-12]. To demonstrate the learning 

algorithm for CNN layers, we present the convolution 

operation in the same mathematical form as the full 

connected ANN layer. This will allow the same learning 

algorithm to be applied in the same way. If one-

dimensional feature maps are used, the convolution 

operations in equation (14) can be expressed as a basic 

matrix multiplication by introducing a large sparse 

weight matrix W . This matrix is created by multiplying 

the basic weight matrix: 

 

1,1,1 1, ,1

,1, , , * *

,  

J

I F I J F I F J

w w

W

w w

 
 

=  
 
 

  (17) 

 

where W consists of I F


rows, where F is the size of 

the filter, each I row contains I rows for the input 
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feature maps, and W has J columns representing the 

weights of the feature J maps in the convolution layer.  

 

The input data maps and the convolution functions 

are vectorized as vectors  and q . A vector row is 

created from the input function maps ( )1, ,iO i I=  : 

 

1 2 | ,  Mv v v =        (18) 

 

where Mv  is the row vector, with the values of the 

m− th frequency range on all function maps , I and M

is the number of frequency bands of the input layer. The 

convolution results calculated in (14) can be expressed 

as 

 

( ).  q W =    (19) 

 

Equation (19) has the mathematical form of a full-

connection layer, so the weights of the convolution 

layer can be updated using the backpropagation 

algorithm. The W looks like: 

 

*  .  W e=                        (20) 

 

In addition, the error vector can be calculated 

using the same method or passed to the lower layer 

using a matrix W  containing sparse values. In addition, 

the bias problem can be solved by including an 

additional row in the matrix that stores the bias values 

and reproduces them on all bands of the convolutional 

layers. In addition, we can also add an element to the 

vector  with a value of one to handle the bias. The 

pooling layer does not need to be trained because it has 

no weights. However, it is necessary to pass error 

signals to the lower layers through the pooling function. 

With maximum pooling, for example, the error signal is 

passed only to the most active block, which is the 

largest in the group of pooled blocks [13-15]. Therefore, 

to calculate the error signal that is sent back to the lower 

convolution layer, the error signal: 

 

( )( ), , ,  * 1 * ,low
i n i m i m

m

e e u m s n= + − −   (21) 

 

where ( )x is the delta function, 1has the value , if 

0x = , otherwise zero, and ,i mu is the index of the unit 

with the maximum value among the combined units and 

is defined as: 

 

( ), , 1 *
1

arg max  i m i m s n
n

u q − +
=

= .   (22) 

4. Discussion of results 

The research analyzed various aspects of audio 

signal processing, in particular for the purpose of their 

further classification and speech recognition. The main 

attention was paid to the use of neural networks as a 

promising tool for solving these problems. The study of 

statistical and physical methods of working with audio 

signals allowed to form a basic understanding of their 

characteristics and methods of representation, such as 

time-frequency images. This became the starting point 

for the further development of more complex systems 

based on machine learning. In particular, the principles 

of functioning of neural networks and methods of their 

adaptation for audio recognition were investigated, 

which confirmed their effectiveness in this direction.  

Despite the general effectiveness of neural 

networks, a significant problem was identified regarding 

their application to the Ukrainian language. The limited 

number of available models and training sets for the 

Ukrainian language creates serious obstacles to the 

creation of high-quality recognition systems. This 

deficit contrasts with the large number of resources 

available for the English language, which emphasizes 

the need for additional research and development in this 

direction. Overcoming this barrier is key to further 

implementing Ukrainian language recognition 

technologies in everyday life, for example, in voice 

search or dictation systems. 

In summary, the results of the work confirm that 

neural networks are a powerful tool for speech 

recognition, in particular, for analyzing audio signals. 

We managed to find effective models and tools for their 

training, which lays the foundation for future research. 

However, in order to fully realize the potential of these 

technologies for the Ukrainian language, it is necessary 

to expand the base of available models and training 

data. This opens up a wide field for further scientific 

developments aimed at creating effective, reliable and 

accessible Ukrainian language recognition systems. 

5. Conclusions 

The main methods of audio signal processing were 

studied, mainly from the point of view of sound 

classification. The general characteristics of sound 

signals were considered, followed by a description of 

time-frequency images for sound. Attributes useful for 

classification were reviewed. Neural networks, the 

principle of their operation and methods of audio 

recognition using them were described. The audio 

signal, its representation, statistical and physical 

methods of working with it were studied. Effective 

models for correct recognition of the Ukrainian 

language and toolkits for training the model were found. 

A dataset consisting of more than minutes of audio 

containing spoken and literary Ukrainian was created, 

using this dataset a linguistic model was compiled. 

Software was created that has an interface for ease of 

use. 

To evaluate the result obtained, a comparison was 

made with existing solutions that allow recognizing the 

Ukrainian language in real time. It can be noted that the 

created software can compete with existing solutions, as 

it has its advantages, but loses in accuracy when there 

are a large number of words in a sentence for 

recognition, so there is a need to improve it. 
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ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ НЕЙРОМЕРЕЖЕВОГО РОЗПІЗНАВАННЯ МОВЛЕННЯ В РЕЖИМІ 

РЕАЛЬНОГО ЧАСУ 

І. В. Сердюк, О. В. Тоніца, О. А. Геляровська, О. В. Яновський 

Анотація. Актуальність. В наш час є актуальним дослідження основних засобів обробки аудіосигналу, переважно 

з точки зору класифікації звуку та підходи до їх удосконалення. Розглянуто загальні характеристики звукових сигналів з 

наступним описом частотно-часових зображень для звука та переглянуті атрибути, корисні для класифікації. Людський 

слух – це неймовірний інструмент, який дає нам багато інформації про навколишній світ. Ми легко вловлюємо звуки 

птахів, звуки машин на відстані та навіть складні музичні композиції. Предметом дослідження в статті є слухова 

система людини, що здатна обробляти всю цю інформацію, аналізуючи та групуючи різні звуки. Цей процес відомий як 

аналіз слухової сцени. Такі програми, як розпізнавання мовлення, транскрипція музики та пошук мультимедійних даних, 

можна значно вдосконалити за допомогою розділення та класифікації джерел звуку. Обробка цифрового аудіосигналу 

має ряд важливих застосувань, таких як стиснення аудіоданих, синтез звукових ефектів і класифікація звуків. В наш час 

класифікація звуку стає все більш важливою, оскільки створюється все більше і більше мультимедійного вмісту. Це 

особливо корисно, коли йдеться про пошук серед аудіовізуальних матеріалів, оскільки прослуховування аудіокліпів 

може бути більш ефективним способом навігації, ніж перегляд відеосцен. Класифікацію звуку також можна 

використовувати як інтерфейс для стиснення аудіо, оскільки різні типи звуків, такі як музика та мова, потребують різних 

методів стиснення. Метою даної роботи є дослідження підходів до створення систем нейромережевого розпізнавання 

мовлення. Розпізнавання мовлення в реальному часі стало неймовірно корисним інструментом для вирішення 

різноманітних проблем у різних сферах життя. Зараз багато компаній пропонують програмне забезпечення для 

диктування, яке дозволяє людям створювати пошукові запити або диктувати електронні листи за допомогою голосових 

команд. Доцільним є розгляд нейромережевого розпізнавання мови, зокрема, української. Однією з найбільших 

проблем, з якими стикається аналіз українського мовлення, є обмежена кількість моделей, доступних для розпізнавання. 

Якщо для англійської є багато моделей, то для української – їх зовсім мало. Загалом потенційні переваги обробки звуку 

та розпізнавання мовлення очевидні, і цілком імовірно, що ми продовжуватимемо бачити нові розробки в цих сферах у 

майбутньому. Описані нейромережі, принцип їх роботи та способи розпізнавання аудіо за допомогою них. Було 

отримано такі результати: досліджено аудіосигнал, його представлення, статистичні та фізичні методи роботи з ним. 

Висновок. Знайдено ефективні моделі для коректного розпізнавання мови та тулкіти для навчання моделі. 

Ключові слова: нейронні мережі, обробка аудіосигналу, згорткова нейромережа, гештальт-групування, кохлеарна 

модель, датасет. 
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