
ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

47

UDC 004.056.55 doi: https://doi.org/10.20998/3083-6298.2025.02.06

Vladyslav Maksymov1

1Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

ARCHITECTURAL PRINCIPLES AND OPERATIONAL PRACTICES FOR

BUILDING SECURE DIGITAL INFRASTRUCTURE IN CLOUD ENVIRONMENTS

Abstract . Topicality. Internet ecosystems evolve faster than traditional enterprise lifecycles, which results in the constant

emergence of new attack vectors and growing risks of data leakage, data loss, and SLA violations. Security is no longer limited

to being a property of code; it has become an end-to-end attribute of the entire ecosystem, encompassing identities, networks,

data, applications, processes, and telemetry. Subject of study. Multi-layered security for cloud infrastructures and web

applications that combines Zero Trust, defense in depth, secrets management, privacy controls, DevSecOps practices, and

correlation of logs, metrics, and traces. Purpose. To create a reproducible scaffold of architectural principles and operational

practices that reduces the attack surface, shortens MTTD and MTTR, supports SLO and SLA compliance, and facilitates

alignment with control catalogs such as CIS AWS Foundations and industry frameworks including NIST SP 800-207, NIST SP

800-53, ISO/IEC 27001, CSA CCM, and the OWASP Top Ten. Methods. Isolation of environments and trust boundaries; role-

based access with MFA and short-lived credentials; centralized secrets management and rotation; private networks and micro-

segmentation; pervasive encryption at rest and in transit; data lifecycle and privacy controls; implementation of security gates in

CI/CD; standardized configuration baselines and continuous compliance scanning; centralized logging, distributed tracing, and

guided incident response. Results. A detailed set of policies and sub-practices with clearly defined goals, procedures, artifacts,

acceptance criteria, and metrics; generalized figures representing security posture; a table of operational targets; and an analysis

of observability’s role in improving MTTD and MTTR. Conclusions. The integration of security standards and observability

into both system architecture and operational lifecycle improves system resilience, strengthens auditability, and ensures that risks

remain manageable while maintaining acceptable operational costs.

Key words: Cloud security; AWS security best practices; Zero Trust architecture; Defense in Depth; Data protection;

Cybersecurity risk management; Secure software development lifecycle; Application security; Network segmentation;

Encryption; Monitoring and surveillance; Incident response; Compliance.

Introduction

Problem relevance. Internet ecosystems are in

constant flux, which accelerates threat evolution:

phishing improves, supply‑chain exploits become more

intricate, and cloud misconfigurations are a growing

attack vector. Production systems built with older

paradigms often continue to operate, creating a gap

between modern threats and legacy security practices.

The severity stems from data value: incidents entail

not only direct financial losses but also long‑term

reputational damage, regulatory exposure, and loss of

user trust. With massive cloud adoption, security must be

engineered as a property of architecture, processes, and

operations, not merely a code‑level add‑on.

We address end‑to‑end security in an AWS‑like

cloud context while keeping recommendations

technology‑neutral. The novelty is a coherent

policy‑and‑process scaffold with measurable metrics

covering identity administration, network segmentation,

encryption and key management, privacy and data

lifecycle, DevSecOps, observability, and incident

response.

Literature review. Zero Trust (NIST SP 800‑207)

defines a departure from implicit trust and continuous

verification of identity, context, and device posture.

NIST SP 800‑53 Rev.5 systematizes controls from

identity and cryptography to logging and incident

response. ISO/IEC 27001:2022 defines ISMS

requirements grounded in risk management. The CSA

Cloud Controls Matrix (CCM v4/v4.1) maps cloud

control objectives and eases cross‑framework alignment.

The CIS AWS Foundations Benchmark v1.4.0

offers prescriptive configuration checks across identities,

logging, monitoring, and service baselines. At the

application layer, we follow OWASP Top‑10:2021 and

the Cheat Sheet Series for microservices, secrets, REST,

and authentication.

Empirical work shows that observability and

DevSecOps practices reduce MTTR, accelerate

root‑cause localization, and decrease the frequency of

production vulnerabilities, while acknowledging

challenges of alert noise, telemetry storage cost, and

configuration drift. This motivates a scaffold that couples

controls, processes, and metrics to balance security,

speed, and cost.

The purpose of the research is to develop a

comprehensive, reproducible framework of architectural

principles and operational practices for securing cloud

infrastructures and web applications. The framework

seeks to minimize the attack surface, improve resilience

through reduced Mean Time to Detect (MTTD) and

Mean Time to Recover (MTTR), ensure compliance with

Service Level Objectives (SLO) and Service Level

Agreements (SLA), and streamline alignment with

internationally recognized security benchmarks, partner

certification requirements, and industry best practices.

This work emphasizes a holistic approach to

security that integrates governance, risk management,

compliance, secure software engineering, and

operational resilience into a unified model. The approach

is intended to be adaptable to different cloud service

providers, with a primary reference to Amazon Web

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

48

Services (AWS), while maintaining applicability to

hybrid and multi-cloud environments.

Objectives:

1. Design a stratified security control model.

Establish layered controls, trust boundaries, and defense

in depth mechanisms that provide granular isolation

between environments and workloads.

2. Define policies and standards for Identity and

Access Management (IAM), secrets handling, network

segmentation, and encryption (both in transit and at rest),

ensuring adherence to the principle of least privilege and

regulatory requirements.

3. Specify requirements for data lifecycle

management and privacy protection, including data

classification, retention, deletion policies, and

compliance with frameworks such as GDPR and CCPA.

4. Integrate security principles into the Software

Development Life Cycle (SDLC) and CI/CD pipelines,

embedding secure coding standards, automated

vulnerability scanning, and policy enforcement at all

stages of delivery.

5. Architect observability, monitoring, and incident

response processes. Develop a telemetry driven security

operations capability using centralized logging, anomaly

detection, and forensic readiness.

6. Define measurable performance indicators.

Establish Key Performance Indicators (KPI), Service

Level Indicators (SLI), and Service Level Objectives

(SLO) alongside thresholds and alerting strategies to

maintain operational and security performance.

 7. Demonstrate the framework’s impact on

operational risk. Use case studies and simulated attack

scenarios to illustrate measurable improvements in risk

index scores, MTTD, and MTTR metrics.

1. Methods, Models, and Algorithmic

Foundations

The methodological basis of this research is a

hybrid integration of Zero Trust Architecture (ZTA)

principles and Defense-in-Depth (DiD) strategies. This

approach combines identity-centric and context-aware

access control, fine-grained network micro-

segmentation, pervasive encryption, centralized secrets

management, and comprehensive observability across

infrastructure and application layers. The objective is to

create a unified, layered security framework that applies

to cloud-native, hybrid, and multi-cloud environments.

At the conceptual level, the framework enforces:

 •Identity and Context-Based Access Control

(ICBAC): All access decisions are validated against

dynamic contextual parameters (user identity, device

state, geolocation, and behavioral patterns).

 •Network Micro-Segmentation: Logical and

physical isolation of workloads to prevent lateral

movement within the infrastructure.

 • Pervasive Encryption: End-to-end encryption

in transit and at rest, leveraging managed key

infrastructure and hardware security modules (HSM).

 • Centralized Secrets Management: Secure

storage, distribution, and rotation of credentials, keys,

and tokens, with automated policy enforcement.

 • Total Observability: Continuous collection

and analysis of telemetry data, logs, traces, and metrics

for anomaly detection, incident response, and forensic

analysis.

From a quantitative perspective, the framework

uses a composite set of metrics to evaluate security

posture and operational resilience. These include:

 •Risk Index R ∈ [0,1]: A normalized measure of

overall exposure to threats, with 1 representing maximum

risk

 • Control Coverage C ∈ [0,1]: The fraction of

relevant security controls that are fully implemented and

verified.

 • Mean Time to Detect (MTTD) and Mean Time

to Recover (MTTR): Operational metrics for detection

and recovery latency.

 • Composite Security Score S

Mapping to Standards and Best Practices:

The defined controls and processes are aligned with

the CIS AWS Foundations Benchmark and the AWS

Well-Architected Framework (Security Pillar) for

infrastructure-level practices. For application-level

security, the model maps to OWASP Top 10 categories

and associated OWASP Cheat Sheets, ensuring coverage

of common vulnerability classes such as injection,

broken authentication, and sensitive data exposure.

The proposed algorithmic approach enables

repeatable measurement, auditability, and continuous

improvement, supporting periodic compliance checks,

automated drift detection, and adaptive policy

enforcement in dynamic cloud environments.

2. Policies and Engineering Practices for a

Secure Cloud

Purpose and scope. This section regulates

mandatory and recommended security practices for cloud

infrastructure and web applications with an emphasis on

AWS‑like environments. It targets architects, security

engineers, SRE/DevOps, and developers. Applicability

boundaries: enterprise systems processing personal or

commercially sensitive data, multi‑account landscapes,

microservice topologies.

Terms and abbreviations. MFA refers to multi

factor authentication. IAM refers to identity and access

management. TLS refers to mutual transport layer

security. KMS refers to key management service. SBOM

refers to software bill of materials. SAST, DAST, and

SCA refer to static analysis, dynamic analysis, and

dependency analysis respectively. MTTD and MTTR

refer to mean time to detect and mean time to recover.

SLI, SLO, and SLA refer to service level indicator,

service level objective, and service level agreement. DSR

refers to data subject request. DR refers to disaster

recovery.

Context and assumptions. Environments are

separated (prod/stage/dev); managed cloud services are

used; centralized logs, tracing, and CI/CD exist; risk

management follows ISO/IEC 27001. Controls are

aligned with NIST SP 800‑207/‑53, CSA CCM, CIS

AWS Foundations, and OWASP. Limitations: security

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

49

does not replace change management, peer review, or

business accountability for data classification.

Metrics and quality control. KPI/SLI/SLO: risk

index R; control coverage C; MTTD, MTTR; MFA

coverage; share of short‑lived credentials; encryption and

trace coverage; compliance score vs. benchmarks; DSR

SLA; DR RPO/RTO. Recording: centralized telemetry;

reporting cadence: weekly/monthly; policy audits:

quarterly with retrospectives.

Compliance and risks. Frameworks: CIS AWS

Foundations, AWS Well‑Architected (Security), NIST

SP 800‑207/‑53, ISO/IEC 27001, CSA CCM, OWASP.

Risks: credential theft, misconfiguration, supply‑chain

CVEs in dependencies and base images, uncontrolled

egress leading to exfiltration, failures and data loss.

Mitigations: environment isolation and trust boundaries,

least privilege, short‑lived credentials, pervasive

encryption, DevSecOps gates, observability, and trained

IR.

2.1. Account Architecture and Trust

Boundaries. In the context of modern cloud ecosystems,

the architecture of accounts and the delineation of trust

boundaries play a decisive role in ensuring systemic

resilience, regulatory compliance, and effective incident

containment. The core objective here is to achieve strict

isolation of environments and operational domains,

thereby reducing the blast radius of potential security

incidents and enabling more precise auditing and

accountability.

From a governance perspective, it is imperative that

production, staging, and development environments are

hosted in physically and logically separated accounts.

Cross account trust relationships must be established

exclusively through short lived, least privilege roles that

are automatically revoked or rotated after a defined

interval. Administrative responsibilities should be

divided among separate security, operations, and

compliance teams to minimize the risk of privilege

escalation. In exceptional cases such as urgent

diagnostics in a controlled environment, temporary trust

relationships may be granted, but always with a clearly

documented rationale and a predefined expiration date.

This segmentation strategy is not merely a matter of

policy. It is a proactive measure to localize and contain

the impact of potential breaches, to facilitate forensic

investigation, and to ensure alignment with industry

frameworks such as the CIS AWS Foundations

Benchmark and the AWS Well Architected Framework

Security Pillar. The procedural workflow typically

involves the hierarchical definition of the organization,

followed by account structuring and the mapping of

environments. This process includes the separation of

billing channels, the deployment of dedicated logging

accounts, and the implementation of delegated roles for

environment specific operations. On a quarterly basis,

trust boundaries are reviewed and obsolete or unused

trust configurations are systematically decommissioned.

The tangible artifacts produced during this process,

such as a centralized registry of accounts and trust

relationships, architectural diagrams of trust boundaries,

and detailed review records, serve both as operational

references and as evidence of compliance during security

audits. Success in this domain is measured against

explicit quality gates. No production resources may be

shared across environments. The account registry must

remain up to date. Quarterly trust reviews must be

successfully passed. All temporary trusts must be fully

documented, including their justification and closure.

To maintain continuous assurance, a defined set of

metrics is tracked. This includes the total count and age

distribution of active trust relationships, the average time

required to revoke a trust, and the percentage of services

isolated by environment, which should remain at or

above ninety five percent. Policy as code frameworks,

automated account inventory systems, and compliance

snapshot tools are deployed to enforce these standards at

scale, ensuring that deviations are promptly detected and

remediated. Exceptions to these rules are permissible

only under the explicit authorization of the security

leadership, with every deviation logged, justified, and

subject to post event review.

By adopting such a rigorously controlled account

architecture, organizations not only reduce their

operational attack surface but also gain a robust

foundation for sustainable security governance, adaptive

threat response, and demonstrable compliance with

prevailing cloud security benchmarks.

2.2. Identity and Access Management (IAM).

Identity and Access Management (IAM) is a key

component of cloud infrastructure security, ensuring

control over authentication, authorization, and

accountability for user and service actions. The goal is to

provide access only to those subjects who need it, for the

minimum possible time, while fully eliminating long-lived

human credentials.

Mandatory requirements include 100% use of multi-

factor authentication (MFA) for all human accounts and a

complete ban on static access keys. It is recommended to

enforce short time-to-live (TTL) values for elevated

privilege sessions and apply Permission Boundaries to

limit the maximum privilege scope. In exceptional cases

(“break-glass” access), temporary privilege escalation is

allowed with mandatory auditing and automatic session

termination.

These rules apply to all human access channels and

to critical machine integrations. Exceptions are permitted

only for service roles operating in trusted environments.

The main rationale is to reduce the attack window in case

of credential compromise and to prevent privilege

escalation, in alignment with CIS and NIST

recommendations.

The process includes issuing short-lived sessions

through an Identity Provider (IdP), splitting administrative

duties between teams, regularly reviewing IAM policies,

and immediately revoking access upon role changes or

employee termination.

Key artifacts include a catalog of roles and policies,

authentication logs, and privilege escalation reports.

Acceptance criteria: MFA coverage at 100%, no static

access keys, and session TTL values within defined

thresholds.

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

50

Metrics: MFA coverage rate, median session TTL,

access deactivation time, and the ratio of allowed to denied

authorization requests. Automation is supported through

federation platforms, IAM analytics, and sign-in

monitoring. Exceptions are documented in writing, time-

boxed, logged in the tracking system, and approved by the

security lead.

2.3. Secrets and Certificate Management. Secrets

and certificate management is a critical aspect of securing

modern cloud-based and distributed systems. The primary

goal is to eliminate the presence of sensitive credentials

such as API keys, passwords, and private keys from

source code repositories, container images, or other static

artifacts, and to ensure a managed, auditable lifecycle for

all secrets, keys, and certificates.

Mandatory requirements include the use of a

centralized secret management system as the single

authoritative store for all sensitive credentials, and the

enforcement of runtime injection for secret delivery to

applications and services. This approach prevents

credentials from being embedded in code or stored in

persistent images. It is recommended to implement

automatic rotation of secrets and certificates and to

maintain a full audit trail of all access and read operations.

In some cases, short-lived tokens or leases may be issued

to further reduce the attack surface.

These controls apply to all environments, from

development to production. Exceptions are permitted only

for fully isolated sandbox environments that have no

connectivity to production data or systems. Centralizing

secret management reduces the potential exfiltration

surface, while runtime injection aligns with best practices

outlined by OWASP and CIS benchmarks, ensuring that

secrets never persist outside secure, controlled channels.

The standard process begins with defining access

segmentation, ensuring that read permissions are granted

only to the components or individuals that strictly require

them. Rotation policies must be defined for each secret

type, along with rules for certificate lifetime management.

Systems should trigger alerts as certificates approach

expiration (time-to-expiry, TTE) and conduct routine

rotation drills to verify operational readiness.

Artifacts generated from this process include a

complete registry of secrets, documented rotation

policies, detailed access and rotation logs, and an up-to-

date inventory of certificates. Acceptance criteria include

zero occurrences of secrets in code repositories or

container images, full validity of all certificates in use, and

successful completion of rotation drills within the defined

operational window.

Key metrics include the average and maximum age

of secrets, a minimum of 90% automated secret and

certificate rotation coverage, zero recorded incidents of

“secret found in code,” and maintaining a defined TTE

buffer for certificates to avoid unexpected expirations.

Automation and tooling typically involve the use of

centralized secret storage platforms, key management

services (KMS), public key infrastructure (PKI) systems,

leak detection scanners, and dashboards for monitoring

secret age and certificate validity.

All exceptions must clearly designate an owner and

an expiration date, be logged in the security tracking

system, and be reviewed during each sprint to ensure

timely remediation and risk minimization.

2.4. Networks, Micro‑segmentation, and

Controlled Egress. Network segmentation and

controlled egress are foundational elements of a secure

cloud and microservices architecture. The primary goal is

to minimize the attack surface by enforcing a privacy-by-

default approach, ensuring that only explicitly approved

communication paths are available, and that outbound

traffic is subject to strict control.

Mandatory requirements include enforcing a deny-

by-default policy for all east–west (service-to-service)

traffic and allowing public endpoints only when strictly

necessary. It is recommended to establish mandatory

Transport Layer Security (TLS) encryption for all inter-

service communications and to use outbound traffic

allow-lists or egress gateways to control external

connectivity.

The scope covers all environments where services

interact with each other or initiate outbound connections

to the Internet, including production, staging, and critical

development environments. The rationale is that network

micro-segmentation replaces broad, permissive rules with

fine-grained service identity–based controls, significantly

reducing the likelihood of lateral movement by attackers.

Similarly, outbound traffic control mitigates data

exfiltration risks and blocks command-and-control (C2)

channels commonly used in advanced persistent threats

(APTs).

The canonical process begins by defining and

documenting network perimeters and categorizing

workloads into perimeter, application, and data tiers.

Access control lists (ACLs) and security group policies

are then configured to enforce segmentation rules. TLS

encryption is applied to all service-to-service

communications, with automated verification where

possible. Segmentation and policy rules are periodically

tested using penetration testing tools or simulation

frameworks to ensure continued enforcement and to

identify misconfigurations.

Artifacts include up-to-date segmentation diagrams,

complete rule lists with justifications, test reports from

segmentation validation exercises, and an inventory of all

public endpoints in the environment. Acceptance criteria

include the complete absence of “any-any” rules, the

presence of only minimal and justified public endpoints,

and active TLS protection for internal communication

paths.

Key metrics include the total number of public

endpoints, the percentage of internal communication

paths protected by TLS (target ≥ 80%), the number of

blocked unauthorized egress attempts, and the average

lead time for implementing approved policy changes.

Recommended tooling and automation components

include network policy controllers, distributed denial-of-

service (DDoS) protection services, automated egress

inventory tools, and real-time network event analyzers

capable of detecting anomalous traffic flows.

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

51

Exceptions are permitted only on a temporary basis,

must have a defined end date, and require escalation to the

environment owner and the security team. All exceptions

must be documented, monitored, and reviewed for closure

before their expiration date.

2.5. Encryption and Key Management.

Encryption and key management form the backbone of

data confidentiality and integrity in any secure cloud or

distributed system. The primary goal is to ensure that

sensitive data remains protected both at rest and in transit,

while maintaining an operational model that does not

introduce excessive complexity or latency.

Mandatory requirements include 100% encryption

coverage for all sensitive data (both at rest and in transit)

using industry-accepted algorithms and protocols. At-rest

encryption must be enforced through managed encryption

services or equivalent, while in-transit encryption must

rely on modern TLS configurations. It is recommended to

maintain a separation of duties between data and key

ownership to reduce the likelihood of insider threats, and

to schedule planned cryptographic key rotations to limit

the impact of potential key compromise. Where feasible,

hardware-based roots of trust (e.g., HSMs) may be

incorporated to strengthen assurance levels.

The scope applies to all data storage systems

(databases, object storage, file systems) and all transport

channels that handle sensitive or regulated data. The

rationale is that establishing dedicated key hierarchies per

data classification category minimizes the blast radius in

the event of compromise, while strict TLS validation

prevents interception, replay attacks, and data tampering

during transmission.

The canonical process begins with the design of a

multi-tiered key hierarchy, where master keys are used to

encrypt data encryption keys (DEKs) for specific datasets

or services. Certificate issuance and revocation must be

automated to avoid manual intervention delays. Regular

validation of TLS versions and cipher suites ensures

alignment with current security baselines. Planned key

rotation exercises must be executed in a way that avoids

downtime or data loss, and these tests should be

documented and repeatable.

Artifacts include a centralized registry of all keys

and certificates, rotation policy documents, cryptographic

operation logs, and documented test protocols for rotation

drills. Acceptance criteria require full encryption

coverage, the maintenance of a time-to-expiry (TTE)

buffer for all certificates to prevent unexpected expiration,

and the successful execution of rotation tests without data

corruption or service interruption.

Metrics include encryption coverage (target 100%),

average and maximum cryptographic key age, the

percentage of network traffic secured with modern TLS

versions, and the number of TLS-related connection

failures. These metrics provide direct visibility into the

security posture of the system and help drive timely

remediation.

Recommended tools and automation frameworks

include key management services (KMS), public key

infrastructure (PKI) solutions, automated certificate

management platforms, and TLS verification utilities.

Exceptions are extremely limited and must be

publicly tracked within the organization, have a defined

closure date, and be approved by the security governance

board. All exceptions must be reviewed prior to expiration

and either remediated or formally extended with

documented justification.

2.6. Data, Privacy, and Lifecycle. Effective data

lifecycle management combined with strict privacy

controls is essential for minimizing risks to personal and

sensitive information while ensuring compliance with

applicable legal and regulatory frameworks. The primary

goal is to handle all data according to clearly defined

classification, retention, residency, and access policies,

ensuring that sensitive data remains both secure and

auditable throughout its lifecycle.

Mandatory requirements include comprehensive

data classification and minimization practices, ensuring

that only necessary data is collected and retained. Data

retention periods must be explicitly defined, documented,

and enforced. Geographic residency requirements should

be implemented where applicable, especially for data

subject to jurisdictional restrictions such as GDPR or

CCPA. All backups must be tested regularly to ensure

recoverability, and access to sensitive data fields must be

logged in detail for audit and compliance purposes.

The scope covers all systems, storage repositories,

and data flows that handle personal or sensitive

information, as well as all access log records associated

with such data. The rationale is that implementing object

level and field level access controls enforces the principle

of “only access your own data,” which significantly

reduces the risk of unauthorized exposure. Regular

disaster recovery (DR) testing ensures that business

continuity can be maintained even in the event of data loss

or system compromise.

The canonical process involves creating a detailed

data catalog that categorizes all datasets by sensitivity and

applicable regulatory requirements. Retention and geo

residency policies must be defined for each category, and

access control mechanisms, whether Attribute Based

Access Control (ABAC) or Role Based Access Control

(RBAC), should be applied down to the field level where

applicable. Data subject rights (DSR) tooling should be

implemented to support regulatory requests such as data

access, correction, and deletion. DR tests must be

conducted to ensure recovery point objectives (RPO) and

recovery time objectives (RTO) are met without

compromising data integrity.

Artifacts include the data catalog, retention and geo

residency policy documents, detailed access logs for

sensitive fields, and records of DR testing outcomes.

Acceptance criteria require at least 95 percent valid

classification coverage, adherence to all defined geo

residency requirements, and demonstrated ability to

perform DR recoveries within established RPO and RTO

targets.

Key metrics include the percentage of datasets with

valid classification, DSR service level agreement (SLA)

compliance rate, DR test success rate, and the count of

sensitive field access events accompanied by a complete

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

52

audit trail. These metrics provide continuous insight into

the maturity of data governance and operational readiness.

Recommended tools and automation capabilities

include Data Loss Prevention (DLP) and Information

Rights Management (IRM) systems, enterprise grade data

catalogs, field level access enforcement mechanisms, and

automated DSR request management platforms.

Exceptions are not permitted for production

environments containing sensitive personal data. The only

permissible deviations apply to anonymized datasets,

which must be processed under a separate documented

procedure with explicit review and approval by the data

governance team.

2.7. Application Lifecycle and DevSecOps. The

integration of security into every stage of the Software

Development Life Cycle (SDLC) is a fundamental

principle of modern application engineering. The primary

goal is to ensure that security controls are applied

consistently and effectively throughout development,

testing, deployment, and maintenance, without

introducing delays that would critically impact release

schedules.

Mandatory requirements include the

implementation of quality gates for Static Application

Security Testing (SAST), Dynamic Application Security

Testing (DAST), Software Composition Analysis (SCA),

container image scanning, Infrastructure as Code (IaC)

validation, and automated detection of hardcoded secrets.

Policy as code approaches are strongly recommended to

ensure that security rules are versioned, auditable, and

automatically enforced. The generation and maintenance

of a Software Bill of Materials (SBOM) is also

recommended to improve visibility into dependencies and

to facilitate faster responses to vulnerabilities. All build

artifacts must be digitally signed, and signature

verification must be performed at deployment time to

guarantee supply chain integrity.

This policy applies to all code, infrastructure

definitions, and configuration changes destined for

production environments. The rationale for these

measures is clear: implementing security gates early in the

SDLC significantly reduces the cost and complexity of

remediating vulnerabilities, while SBOM and artifact

signing establish trust in the software supply chain and

accelerate remediation of Common Vulnerabilities and

Exposures (CVE).

The canonical process involves strict isolation of

build and runtime environments to prevent contamination

of production systems. All external dependencies must be

sourced from verified repositories, and their versions

should be pinned to prevent unverified updates. Base

images should be updated regularly with the latest

security patches. During the build process, the SBOM

must be generated and stored in a secure repository. All

artifacts are digitally signed, and their signatures are

verified automatically during deployment to prevent

tampering.

Artifacts generated during this process include

security gate reports, CVE tracking lists, current SBOM

files, and digital signature metadata confirming artifact

provenance. Acceptance criteria require that no critical

CVEs are present at the time of release, that the SBOM is

up to date, and that all production artifacts have been

signed and verified.

Key metrics include mean time to remediate critical

CVEs, the percentage of builds passing all security gates,

SBOM coverage percentage, the percentage of

reproducible builds, and the policy as code compliance

rate. These metrics provide objective evidence of the

security posture and operational efficiency of the

DevSecOps process.

Recommended tools and automation solutions

include integrated SAST and DAST scanners, SCA tools

for dependency analysis, container and IaC scanners,

artifact signing frameworks, and policy enforcement

controllers.

Exceptions to these rules are permitted only with

documented approval from the security technical board,

and all such exceptions must undergo a post

implementation retrospective to identify root causes and

prevent recurrence.

2.8. Observability and Incident Response (IR).

Ensuring rapid detection and effective resolution of

security incidents requires comprehensive observability

combined with a structured incident response framework.

The primary goal is to minimize the Mean Time to Detect

(MTTD) and the Mean Time to Recover (MTTR) by

providing complete visibility into system behavior,

enabling correlation of telemetry data, and establishing

well-trained operational procedures.

The policy mandates the collection and storage of

centralized control and data plane logs across all

environments. All logs must follow unified schemas and

contain standardized timestamps to ensure accurate

correlation. The use of correlation identifiers is strongly

recommended, as it enables linking logs, metrics, and

traces associated with a single transaction or event.

Distributed tracing should be implemented to capture end-

to-end execution flows, while risk-oriented alerting

should prioritize incidents with the highest potential

impact.

This framework applies to all operational

environments, including non-production systems where at

least minimal logging is required to ensure the ability to

reproduce incidents. The rationale is straightforward: the

integration of log, metric, and trace data under a unified

correlation identifier significantly accelerates forensic

analysis, while the combination of signature-based

detection with behavioral anomaly analysis reduces the

likelihood of missing novel threats.

The canonical process begins with the integration of

log, metric, and trace streams into a central observability

platform. Alert thresholds and priorities are calibrated

based on historical data and evolving threat models.

Incident response drills are conducted regularly according

to documented runbooks to maintain operational

readiness. The effectiveness of alerting mechanisms is

continuously evaluated through the measurement of

precision, recall, and ingestion latency.

Artifacts generated in this process include log

schema catalogs, operational dashboards, incident

response runbooks, and journals of completed drills.

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

53

Acceptance criteria require that all key security-relevant

actions are sufficiently logged, that trace coverage meets

or exceeds defined targets, and that alerting systems

maintain precision and recall within predefined

performance bounds. MTTD and MTTR must remain

within target thresholds agreed upon by stakeholders.

Metrics used for evaluation include MTTD and

MTTR, the proportion of events with complete log-

metric-trace correlation, average log ingestion latency,

alert precision and recall rates, and the percentage of

monitored transactions covered by distributed tracing.

These metrics provide a quantifiable basis for evaluating

both the detection capabilities and operational

responsiveness of the system.

Recommended tooling and automation include

centralized log collection services, application

performance monitoring (APM) and tracing frameworks,

incident management systems, and security analytics

platforms capable of advanced correlation and anomaly

detection.

Exceptions to these requirements are strictly limited.

Disabling production logging or alerting mechanisms is

prohibited without explicit approval from the designated

incident response lead. Any authorized outage must be

time-limited, fully documented, and include a plan for

service restoration and post-event review.

2.9. Resilience, Fault‑Tolerance, and

Availability. Ensuring the resilience, fault tolerance, and

high availability of systems is essential for maintaining

agreed Service Level Objectives (SLO) and Service Level

Agreements (SLA) even under adverse conditions such as

component failures, network partitions, or sudden

workload peaks. The goal is to guarantee that critical

services continue to operate within performance and

reliability targets while preventing cascading failures

across dependent components.

The policy requires redundancy across multiple

availability zones or regions for all critical services. This

geographic and infrastructural separation minimizes the

risk of complete service loss due to localized outages.

Autoscaling mechanisms are recommended to

dynamically adjust capacity based on demand, ensuring

that resources are neither underutilized during low traffic

periods nor overwhelmed during traffic surges.

Additional architectural patterns such as bulkheads,

circuit breakers, and rate-limiting are recommended to

isolate failures and control traffic flow. Disaster recovery

(DR) plans must exist for all critical services and undergo

regular, controlled testing to verify readiness.

This framework applies to all components and

services with strict SLO requirements. For less critical

systems, partial implementation is possible, but still

within a structured degradation plan. The rationale is that

designing for idempotency and incorporating message

queues helps mitigate data duplication and loss during

partial failures, while chaos engineering experiments can

reveal weaknesses before real incidents occur.

The canonical process begins with the separation of

stateful and stateless components, followed by the

introduction of message queues to decouple services and

absorb transient spikes. Continuous health checks, self-

healing mechanisms, and automated failover procedures

are implemented to ensure swift recovery from failures.

Regular disaster recovery drills and controlled chaos

experiments validate the operational readiness of the

system and refine incident playbooks.

Artifacts generated in this process include SLO

monitoring dashboards, error budget reports, detailed

disaster recovery and chaos experiment protocols, and

predefined service degradation plans. Acceptance criteria

require that SLO targets are consistently met, that disaster

recovery and chaos engineering tests are documented, and

that corrective actions from these tests are implemented

within agreed timelines.

Key metrics include SLO attainment rates, error

budget burn rates, failover execution times, autoscaling

reaction times, available capacity headroom, and the

percentage of chaos experiments completed successfully.

These metrics provide an evidence-based evaluation of

the system’s resilience posture and its ability to recover

from faults without breaching contractual commitments.

Recommended tools and automation include

container orchestrators with built-in health management,

autoscaling frameworks, queue managers for

asynchronous communication, and specialized platforms

for chaos engineering.

Exceptions are not permitted for services forming

part of business-critical workflows. For non-critical

systems, exceptions may follow an approved degradation

plan that ensures graceful service reduction rather than

abrupt outages. All exceptions must be documented and

subject to periodic review.

2.10. Configuration Baselines, Patch

Management, and Compliance. The objective of

configuration baselines, patch management, and

compliance enforcement is to minimize the risk of

misconfigurations, reduce the time between the discovery

of vulnerabilities and their remediation, and ensure that all

systems remain consistently aligned with organizational

benchmarks and security policies. Maintaining

standardized and verified configurations across all

environments strengthens the security posture by reducing

variability, which is a common source of operational and

security failures.

The policy requires the use of standardized base

images and configuration profiles for all systems,

including production services, development

environments, continuous integration and continuous

delivery (CI/CD) pipelines, and administrative

workstations. Continuous compliance scanning must be

implemented to detect configuration drift in real time.

Critical patches should be applied within a predefined

Service Level Agreement (SLA) timeframe, and any

exceptions to this process should be strictly managed,

time-bound, and formally approved.

This framework applies to all infrastructure

components and services regardless of their criticality.

While some non-critical systems may receive delayed

patching under controlled circumstances, all deviations

from the baseline must be justified, documented, and

monitored. The rationale is that unified configuration

profiles greatly reduce the likelihood of human error,

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

54

while continuous compliance monitoring identifies and

addresses deviations before they become exploitable

vulnerabilities. This approach aligns with the

recommendations of industry standards such as CIS

Benchmarks, NIST guidelines, and the AWS Well-

Architected Framework Security Pillar.

The canonical process begins with the definition and

maintenance of baseline configurations that meet both

security and operational requirements. These baselines

are stored in version-controlled repositories to ensure

traceability. Automated drift detection tools monitor all

systems, triggering alerts or initiating remediation

workflows when deviations are detected. Safe deviations

can be remediated automatically, while high-impact

changes require manual intervention. Exceptions must

include an assigned owner and an expiration date, and

evidence of remediation activities must be securely stored

for auditing purposes.

Artifacts generated by this process include the

configuration baseline profiles, the exception registry,

compliance scan reports, and remediation evidence logs.

Acceptance criteria include maintaining a compliance

score above the defined threshold, ensuring that critical

patches are deployed within the agreed SLA, and having

no overdue exceptions in the registry.

Key metrics for monitoring this control include the

mean time to apply patches, the overall compliance score,

the rate of configuration drift, the count and average age

of exceptions, and adherence to remediation SLAs. These

metrics are vital for evaluating the efficiency and

consistency of the configuration management process and

for demonstrating compliance during external or internal

audits.

Recommended tooling and automation include

compliance scanning platforms, patch management

solutions, policy-as-code frameworks for consistent

enforcement, and automated evidence reporting systems

for audit readiness.

Exceptions are only permitted when approved by the

security technical board and must be recorded in a

publicly accessible tracking system with a clearly defined

closure date. Regular reviews of exception status are

mandatory to ensure that deviations are resolved within

their approved timeframes.

3. System Description, Figures, Experiments and

Results

The proposed security architecture represents a

stratified control system that integrates multiple, mutually

reinforcing layers of defense. Its core structure

encompasses the following domains: account-level trust

boundaries, granular network micro-segmentation,

Identity and Access Management (IAM) with short-lived

credentials, centralized secrets management, pervasive

encryption, DevSecOps gates integrated into the software

delivery lifecycle, and an observability and incident

response (IR) framework. These elements collectively

form a “defense-in-depth” model designed to minimize

the attack surface, reduce detection and recovery times,

and ensure compliance with established security

benchmarks.

Fig.1. Security posture comparison

Fig.2. Quarterly trend driven by centralized logging/tracing

and improved IR runbooks

Figure 1 illustrates a comparative analysis of

security postures for three operational profiles: “open”

systems with minimal controls, “partially secured”

systems with selective implementation of safeguards, and

“defense-in-depth” systems with comprehensive,

integrated security measures. Key performance indicators

include the risk index, Mean Time to Detect (MTTD),

Mean Time to Recover (MTTR), and overall control

coverage. The results clearly show that a defense-in-depth

approach substantially reduces the risk index while

improving detection and recovery times, as well as

increasing the percentage of implemented security

controls.

Figure 2 depicts a quarterly trend analysis of MTTD

and MTTR improvements driven by the adoption of

centralized logging, distributed tracing, and enhanced IR

runbooks. The downward trend in both metrics over

successive quarters demonstrates the tangible operational

impact of continuous observability, precise correlation of

telemetry, and rehearsed incident-handling procedures.

4. Discussion of results

The adoption of a comprehensive, multi-layered

security framework inevitably introduces operational

complexity. As security controls proliferate, the

configuration surface expands, increasing the likelihood

of misconfigurations if not rigorously governed. More

granular controls and monitoring generate a larger

volume of telemetry, which, while improving

observability, also raises the risk of alert fatigue among

operators. Excessive logging and tracing lead to higher

storage costs, more complex indexing, and increased

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

55

computational overhead for analytics. Furthermore,

stringent patch management cycles and compliance

checks can delay feature releases or maintenance

windows, especially in high-change environments.

This complexity has a measurable commercial

impact. Each additional safeguard not only demands

engineering resources for its implementation but also

requires continuous investment in monitoring, auditing,

and updating. For organizations with lean budgets or

systems that handle minimal sensitive data, such

investment can appear disproportionate to the perceived

risk. In such contexts, a reduced or selectively applied

control model may be sufficient. However, for platforms

handling high-volume personal, financial, or mission-

critical data, the benefits of comprehensive security

overwhelmingly outweigh the drawbacks.

The advantages manifest across several dimensions.

First, Mean Time to Detect (MTTD) and Mean Time to

Recover (MTTR) typically decrease when telemetry

correlation, automated incident response playbooks, and

proactive anomaly detection are integrated. Second, the

system’s predictability and auditability improve,

enabling faster and more confident responses to partner

audits, certification reviews, and compliance

assessments. Third, alignment with recognized

benchmarks and standards (e.g., CIS AWS Foundations

Benchmark, OWASP, NIST) increases stakeholder trust

and market competitiveness.

Balancing these factors requires deliberate design

choices. Risk-oriented logging ensures that high-value

events are captured in detail, while low-impact noise is

minimized through sampling and aggregation

techniques. Data retention policies help control storage

growth, ensuring that only the most relevant and legally

required data is kept. Automated remediation for

common misconfigurations or expired credentials

reduces manual toil, lowers incident count, and supports

faster recovery. Service Level Objective (SLO)-driven

operations ensure that the degree of security enforcement

aligns with the business’s uptime and performance

commitments.

A sustainable approach also requires cultural

alignment between Security Operations (SecOps) and

Site Reliability Engineering (SRE) teams. Cross

functional collaboration ensures that security measures

are integrated in a manner that does not undermine

availability or performance objectives. Furthermore,

incorporating structured post mortem reviews into the

feedback loop ensures that the lessons learned from

incidents are directly applied to the refinement of

policies, controls, and automation scripts. This

continuous improvement process reduces the probability

of incident recurrence and contributes to the progressive

maturity of the security program over time.

5. Conclusions

This study has presented a structured and internally

consistent scaffold of security policies and operational

practices, explicitly mapped to internationally

recognized frameworks and standards including NIST,

ISO 27001, Cloud Security Alliance (CSA), CIS

Benchmarks, and the OWASP Top Ten. Each practice is

supported by clearly defined processes, documented

artifacts, quality gates, and measurable metrics, ensuring

that implementation is both verifiable and repeatable

across different organizational contexts.

The proposed layered security stratification, which

includes account and trust boundary management,

network micro-segmentation, identity and access

controls, data governance, application-level protections,

DevSecOps integration, and observability, significantly

reduces the overall attack surface. This stratification also

enhances auditability and regulatory compliance by

creating discrete, independently verifiable security

zones.

The integration of observability across logs,

metrics, and distributed traces accelerates root-cause

localization during incidents. By enabling high-fidelity

correlation and anomaly detection, the approach

demonstrably shortens Mean Time to Detect (MTTD)

and Mean Time to Recover (MTTR), thereby directly

supporting agreed Service Level Agreements (SLA) and

improving operational resilience.

DevSecOps practices, including the implementation

of security gates at multiple stages of the software

delivery lifecycle, generation of Software Bills of

Materials (SBOM), and cryptographic signing with

deploy-time verification of artifacts, strengthen supply

chain trust. These measures reduce the likelihood of

production-level vulnerabilities being introduced

through third-party dependencies, misconfigurations, or

unverified build processes.

Recognizing the inherent trade-offs between

security, operational complexity, and cost, the

framework incorporates mitigating strategies such as

automated remediation, risk-oriented telemetry

collection, well-defined retention policies, and

disciplined compliance tracking. These strategies help

maintain an optimal balance between security assurance

and operational efficiency, making the approach

adaptable to both high-security and cost-sensitive

environments.

REFERENCES

1. Berardi, D., Giallorenzo, S., Mauro, J., Melis, A., Montesi, F. and Prandini, M. (2022), “Microservice security: a systematic

literature review”, PeerJ Computer Science, 8:e779, https://doi.org/10.7717/peerj-cs.779

2. Li, B., Peng, X., Xiang, Q. et al. (2022), “Enjoy your observability: an industrial survey of microservice tracing and analysis”, Empir

Software Eng, 27, 25, https://doi.org/10.1007/s10664-021-10063-9

3. Yeoh, W., Liu, M., Shore, M. and Jiang, F. (2023), “Zero trust cybersecurity: Critical success factors and A maturity assessment

framework”, https://doi.org/10.1016/j.cose.2023.103412

4. Chauhan, M. and Shiaeles, S. (2023), “An Analysis of Cloud Security Frameworks, Problems and Proposed Solutions Network”,

https://doi.org/10.3390/network3030018

https://doi.org/10.7717/peerj-cs.779
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1016/j.cose.2023.103412
https://doi.org/10.3390/network3030018

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

56

5. Prates, L. and Pereira, R. (2025), “DevSecOps practices and tools”, Int. J. Inf. Secur. 24, 11, https://doi.org/10.1007/s10207-024-

00914-z

6. Wang, R., Li, C., Zhang, K. et al. (2025), “Zero-trust based dynamic access control for cloud computing”, Cybersecurity 8, 12

https://doi.org/10.1186/s42400-024-00320-x

7. ICSE 2023 (2023), “An empirical study on Software Bill of Materials: where we stand and the road ahead”, In: Proceedings of

ICSE, https://doi.org/10.1109/ICSE48619.2023.00219

8. NIST SP 800‑207 (2020), “Zero Trust Architecture”

9. NIST SP 800‑53 Rev.5 (2020), “Security and Privacy Controls for Information Systems and Organizations”

10. Cloud Security Alliance (2024–2025), “Cloud Controls Matrix (CCM v4/v4.1) & CAIQ v4”

11. Center for Internet Security, “CIS AWS Foundations Benchmark v1.4.0”

12. OWASP Top‑10:2021 (2021), “OWASP Cheat Sheet Series (REST, Secrets Management, Microservices Security)”

Received (Надійшла) 07.08.2025

Accepted for publication (Прийнята до друку) 26.08.2025

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS

Максимов Владислав Олександрович – інженер в галузі електроніки та телекомунікацій, спеціальність

«Автоматизовані комплекси радіоелектронних виробництв», випускник Харківського національного університету

радіоелектроніки, Харків, Україна;

Vladyslav Maksimov – Engineer in Electronics and Telecommunications, specializing in Automated Complexes of Radio-

Electronic Productions, graduate of Kharkiv National University of Radio Electronics, Kharkiv, Ukraine;

е-mail: maksimov.v.a.1990@gmail.com; ORCID Author ID: https://orcid.org/0009-0006-4555-8560.

АРХІТЕКТУРНІ ПРИНЦИПИ ТА ОПЕРАЦІЙНІ ПРАКТИКИ ПОБУДОВИ БЕЗПЕЧНОЇ ЦИФРОВОЇ

ІНФРАСТРУКТУРИ В ХМАРНИХ СЕРЕДОВИЩАХ

В. О. Максимов

Анотація . Актуальність. Інтернет-екосистеми розвиваються швидше, ніж традиційні життєві цикли

підприємств, що призводить до постійної появи нових векторів атак та зростання ризиків витоку даних, їх втрати та

порушення рівня наданих послуг (SLA). Безпека більше не обмежується лише властивостями коду, а є наскрізною

характеристикою всієї екосистеми, яка охоплює ідентичності, мережі, дані, додатки, процеси та телеметрію. Предмет

дослідження. Багаторівнева безпека для хмарних інфраструктур та веб-застосунків, що поєднує підхід Zero Trust,

концепцію «захист у глибину» (Defense in Depth), керування секретами, контроль конфіденційності, практики DevSecOps

та кореляцію журналів, метрик і трасувань. Мета. Створення відтворюваного каркасу архітектурних принципів та

операційних практик, що зменшують площину атаки, скорочують показники MTTD та MTTR, підтримують виконання

SLO та SLA, а також сприяють узгодженню з контрольними каталогами, такими як CIS AWS Foundations, та галузевими

стандартами, включно з NIST SP 800-207, NIST SP 800-53, ISO/IEC 27001, CSA CCM та OWASP Top Ten. Методи. Ізоляція

середовищ та довірчих меж; рольовий доступ із багатофакторною автентифікацією та короткостроковими обліковими

даними; централізоване керування секретами та їх ротація; приватні мережі та мікросегментація; повсюдне шифрування

даних під час зберігання та передавання; контроль життєвого циклу та конфіденційності даних; впровадження

контрольних точок безпеки в CI/CD; стандартизовані конфігураційні базові профілі та постійне сканування на

відповідність вимогам; централізоване журналювання, розподілене трасування та керована реакція на інциденти.

Результати. Розроблено детальний набір політик і підпрактик з чітко визначеними цілями, процедурами, артефактами,

критеріями приймання та метриками; підготовлено узагальнені схеми, що відображають рівень безпеки; складено

таблицю операційних цілей; виконано аналіз ролі спостережуваності у скороченні MTTD та MTTR. Висновки. Інтеграція

стандартів безпеки та механізмів спостережуваності як у архітектуру системи, так і в операційний життєвий цикл

підвищує стійкість системи, покращує можливості аудиту та забезпечує контрольованість ризиків при збереженні

прийнятного рівня операційних витрат.

Ключові слова : безпека хмарних середовищ; практики безпеки AWS; архітектура Zero Trust; захист у глибину;

захист даних; керування кіберризиками; безпечний життєвий цикл розробки ПЗ; безпека додатків; сегментація мережі;

шифрування; моніторинг та спостереження; реагування на інциденти; відповідність вимогам.

https://doi.org/10.1007/s10207-024-00914-z
https://doi.org/10.1007/s10207-024-00914-z
https://doi.org/10.1186/s42400-024-00320-x
https://doi.org/10.1109/ICSE48619.2023.00219
mailto:maksimov.v.a.1990@gmail.com
https://orcid.org/0009-0006-4555-8560

