
ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2 

47 
 

 

UDC 004.056.55   doi: https://doi.org/10.20998/3083-6298.2025.02.06 

 

Vladyslav Maksymov1 
 

1Kharkiv National University of Radio Electronics, Kharkiv, Ukraine 
 

ARCHITECTURAL PRINCIPLES AND OPERATIONAL PRACTICES FOR 

BUILDING SECURE DIGITAL INFRASTRUCTURE IN CLOUD ENVIRONMENTS 
 

Abstract .  Topicality. Internet ecosystems evolve faster than traditional enterprise lifecycles, which results in the constant 

emergence of new attack vectors and growing risks of data leakage, data loss, and SLA violations. Security is no longer limited 

to being a property of code; it has become an end-to-end attribute of the entire ecosystem, encompassing identities, networks, 

data, applications, processes, and telemetry. Subject of study. Multi-layered security for cloud infrastructures and web 

applications that combines Zero Trust, defense in depth, secrets management, privacy controls, DevSecOps practices, and 

correlation of logs, metrics, and traces. Purpose. To create a reproducible scaffold of architectural principles and operational 

practices that reduces the attack surface, shortens MTTD and MTTR, supports SLO and SLA compliance, and facilitates 

alignment with control catalogs such as CIS AWS Foundations and industry frameworks including NIST SP 800-207, NIST SP 

800-53, ISO/IEC 27001, CSA CCM, and the OWASP Top Ten. Methods. Isolation of environments and trust boundaries; role-

based access with MFA and short-lived credentials; centralized secrets management and rotation; private networks and micro-

segmentation; pervasive encryption at rest and in transit; data lifecycle and privacy controls; implementation of security gates in 

CI/CD; standardized configuration baselines and continuous compliance scanning; centralized logging, distributed tracing, and 

guided incident response. Results. A detailed set of policies and sub-practices with clearly defined goals, procedures, artifacts, 

acceptance criteria, and metrics; generalized figures representing security posture; a table of operational targets; and an analysis 

of observability’s role in improving MTTD and MTTR. Conclusions. The integration of security standards and observability 

into both system architecture and operational lifecycle improves system resilience, strengthens auditability, and ensures that risks 

remain manageable while maintaining acceptable operational costs. 
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Cybersecurity risk management; Secure software development lifecycle; Application security; Network segmentation; 
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Introduction 

Problem relevance. Internet ecosystems are in 

constant flux, which accelerates threat evolution: 

phishing improves, supply‑chain exploits become more 

intricate, and cloud misconfigurations are a growing 

attack vector. Production systems built with older 

paradigms often continue to operate, creating a gap 

between modern threats and legacy security practices. 

The severity stems from data value: incidents entail 

not only direct financial losses but also long‑term 

reputational damage, regulatory exposure, and loss of 

user trust. With massive cloud adoption, security must be 

engineered as a property of architecture, processes, and 

operations, not merely a code‑level add‑on. 

We address end‑to‑end security in an AWS‑like 

cloud context while keeping recommendations 

technology‑neutral. The novelty is a coherent 

policy‑and‑process scaffold with measurable metrics 

covering identity administration, network segmentation, 

encryption and key management, privacy and data 

lifecycle, DevSecOps, observability, and incident 

response. 

Literature review. Zero Trust (NIST SP 800‑207) 

defines a departure from implicit trust and continuous 

verification of identity, context, and device posture. 

NIST SP 800‑53 Rev.5 systematizes controls from 

identity and cryptography to logging and incident 

response. ISO/IEC 27001:2022 defines ISMS 

requirements grounded in risk management. The CSA 

Cloud Controls Matrix (CCM v4/v4.1) maps cloud 

control objectives and eases cross‑framework alignment. 

 

The CIS AWS Foundations Benchmark v1.4.0 

offers prescriptive configuration checks across identities, 

logging, monitoring, and service baselines. At the 

application layer, we follow OWASP Top‑10:2021 and 

the Cheat Sheet Series for microservices, secrets, REST, 

and authentication. 

Empirical work shows that observability and 

DevSecOps practices reduce MTTR, accelerate 

root‑cause localization, and decrease the frequency of 

production vulnerabilities, while acknowledging 

challenges of alert noise, telemetry storage cost, and 

configuration drift. This motivates a scaffold that couples 

controls, processes, and metrics to balance security, 

speed, and cost. 

The purpose of the research is to develop a 

comprehensive, reproducible framework of architectural 

principles and operational practices for securing cloud 

infrastructures and web applications. The framework 

seeks to minimize the attack surface, improve resilience 

through reduced Mean Time to Detect (MTTD) and 

Mean Time to Recover (MTTR), ensure compliance with 

Service Level Objectives (SLO) and Service Level 

Agreements (SLA), and streamline alignment with 

internationally recognized security benchmarks, partner 

certification requirements, and industry best practices. 

This work emphasizes a holistic approach to 

security that integrates governance, risk management, 

compliance, secure software engineering, and 

operational resilience into a unified model. The approach 

is intended to be adaptable to different cloud service 

providers, with a primary reference to Amazon Web 
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Services (AWS), while maintaining applicability to 

hybrid and multi-cloud environments. 

Objectives: 

1. Design a stratified security control model. 

Establish layered controls, trust boundaries, and defense 

in depth mechanisms that provide granular isolation 

between environments and workloads. 

2. Define policies and standards for Identity and 

Access Management (IAM), secrets handling, network 

segmentation, and encryption (both in transit and at rest), 

ensuring adherence to the principle of least privilege and 

regulatory requirements. 

3. Specify requirements for data lifecycle 

management and privacy protection, including data 

classification, retention, deletion policies, and 

compliance with frameworks such as GDPR and CCPA. 

4. Integrate security principles into the Software 

Development Life Cycle (SDLC) and CI/CD pipelines, 

embedding secure coding standards, automated 

vulnerability scanning, and policy enforcement at all 

stages of delivery. 

5. Architect observability, monitoring, and incident 

response processes. Develop a telemetry driven security 

operations capability using centralized logging, anomaly 

detection, and forensic readiness. 

6. Define measurable performance indicators. 

Establish Key Performance Indicators (KPI), Service 

Level Indicators (SLI), and Service Level Objectives 

(SLO) alongside thresholds and alerting strategies to 

maintain operational and security performance. 

 7. Demonstrate the framework’s impact on 

operational risk. Use case studies and simulated attack 

scenarios to illustrate measurable improvements in risk 

index scores, MTTD, and MTTR metrics. 

1. Methods, Models, and Algorithmic 

Foundations 

The methodological basis of this research is a 

hybrid integration of Zero Trust Architecture (ZTA) 

principles and Defense-in-Depth (DiD) strategies. This 

approach combines identity-centric and context-aware 

access control, fine-grained network micro-

segmentation, pervasive encryption, centralized secrets 

management, and comprehensive observability across 

infrastructure and application layers. The objective is to 

create a unified, layered security framework that applies 

to cloud-native, hybrid, and multi-cloud environments. 

At the conceptual level, the framework enforces: 

 •Identity and Context-Based Access Control 

(ICBAC): All access decisions are validated against 

dynamic contextual parameters (user identity, device 

state, geolocation, and behavioral patterns). 

 •Network Micro-Segmentation: Logical and 

physical isolation of workloads to prevent lateral 

movement within the infrastructure. 

 • Pervasive Encryption: End-to-end encryption 

in transit and at rest, leveraging managed key 

infrastructure and hardware security modules (HSM). 

 • Centralized Secrets Management: Secure 

storage, distribution, and rotation of credentials, keys, 

and tokens, with automated policy enforcement. 

 • Total Observability: Continuous collection 

and analysis of telemetry data, logs, traces, and metrics 

for anomaly detection, incident response, and forensic 

analysis. 

From a quantitative perspective, the framework 

uses a composite set of metrics to evaluate security 

posture and operational resilience. These include: 

 •Risk Index R ∈ [0,1]: A normalized measure of 

overall exposure to threats, with 1 representing maximum 

risk 

 • Control Coverage C ∈ [0,1]: The fraction of 

relevant security controls that are fully implemented and 

verified. 

 • Mean Time to Detect (MTTD) and Mean Time 

to Recover (MTTR): Operational metrics for detection 

and recovery latency. 

 • Composite Security Score S 

Mapping to Standards and Best Practices: 

The defined controls and processes are aligned with 

the CIS AWS Foundations Benchmark and the AWS 

Well-Architected Framework (Security Pillar) for 

infrastructure-level practices. For application-level 

security, the model maps to OWASP Top 10 categories 

and associated OWASP Cheat Sheets, ensuring coverage 

of common vulnerability classes such as injection, 

broken authentication, and sensitive data exposure. 

The proposed algorithmic approach enables 

repeatable measurement, auditability, and continuous 

improvement, supporting periodic compliance checks, 

automated drift detection, and adaptive policy 

enforcement in dynamic cloud environments. 

2. Policies and Engineering Practices for a 

Secure Cloud  

Purpose and scope. This section regulates 

mandatory and recommended security practices for cloud 

infrastructure and web applications with an emphasis on 

AWS‑like environments. It targets architects, security 

engineers, SRE/DevOps, and developers. Applicability 

boundaries: enterprise systems processing personal or 

commercially sensitive data, multi‑account landscapes, 

microservice topologies. 

Terms and abbreviations. MFA refers to multi 

factor authentication. IAM refers to identity and access 

management. TLS refers to mutual transport layer 

security. KMS refers to key management service. SBOM 

refers to software bill of materials. SAST, DAST, and 

SCA refer to static analysis, dynamic analysis, and 

dependency analysis respectively. MTTD and MTTR 

refer to mean time to detect and mean time to recover. 

SLI, SLO, and SLA refer to service level indicator, 

service level objective, and service level agreement. DSR 

refers to data subject request. DR refers to disaster 

recovery. 

Context and assumptions. Environments are 

separated (prod/stage/dev); managed cloud services are 

used; centralized logs, tracing, and CI/CD exist; risk 

management follows ISO/IEC 27001. Controls are 

aligned with NIST SP 800‑207/‑53, CSA CCM, CIS 

AWS Foundations, and OWASP. Limitations: security 
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does not replace change management, peer review, or 

business accountability for data classification. 

Metrics and quality control. KPI/SLI/SLO: risk 

index R; control coverage C; MTTD, MTTR; MFA 

coverage; share of short‑lived credentials; encryption and 

trace coverage; compliance score vs. benchmarks; DSR 

SLA; DR RPO/RTO. Recording: centralized telemetry; 

reporting cadence: weekly/monthly; policy audits: 

quarterly with retrospectives. 

Compliance and risks. Frameworks: CIS AWS 

Foundations, AWS Well‑Architected (Security), NIST 

SP 800‑207/‑53, ISO/IEC 27001, CSA CCM, OWASP. 

Risks: credential theft, misconfiguration, supply‑chain 

CVEs in dependencies and base images, uncontrolled 

egress leading to exfiltration, failures and data loss. 

Mitigations: environment isolation and trust boundaries, 

least privilege, short‑lived credentials, pervasive 

encryption, DevSecOps gates, observability, and trained 

IR. 

2.1. Account Architecture and Trust 

Boundaries. In the context of modern cloud ecosystems, 

the architecture of accounts and the delineation of trust 

boundaries play a decisive role in ensuring systemic 

resilience, regulatory compliance, and effective incident 

containment. The core objective here is to achieve strict 

isolation of environments and operational domains, 

thereby reducing the blast radius of potential security 

incidents and enabling more precise auditing and 

accountability. 

From a governance perspective, it is imperative that 

production, staging, and development environments are 

hosted in physically and logically separated accounts. 

Cross account trust relationships must be established 

exclusively through short lived, least privilege roles that 

are automatically revoked or rotated after a defined 

interval. Administrative responsibilities should be 

divided among separate security, operations, and 

compliance teams to minimize the risk of privilege 

escalation. In exceptional cases such as urgent 

diagnostics in a controlled environment, temporary trust 

relationships may be granted, but always with a clearly 

documented rationale and a predefined expiration date. 

This segmentation strategy is not merely a matter of 

policy. It is a proactive measure to localize and contain 

the impact of potential breaches, to facilitate forensic 

investigation, and to ensure alignment with industry 

frameworks such as the CIS AWS Foundations 

Benchmark and the AWS Well Architected Framework 

Security Pillar. The procedural workflow typically 

involves the hierarchical definition of the organization, 

followed by account structuring and the mapping of 

environments. This process includes the separation of 

billing channels, the deployment of dedicated logging 

accounts, and the implementation of delegated roles for 

environment specific operations. On a quarterly basis, 

trust boundaries are reviewed and obsolete or unused 

trust configurations are systematically decommissioned. 

The tangible artifacts produced during this process, 

such as a centralized registry of accounts and trust 

relationships, architectural diagrams of trust boundaries, 

and detailed review records, serve both as operational 

references and as evidence of compliance during security 

audits. Success in this domain is measured against 

explicit quality gates. No production resources may be 

shared across environments. The account registry must 

remain up to date. Quarterly trust reviews must be 

successfully passed. All temporary trusts must be fully 

documented, including their justification and closure. 

To maintain continuous assurance, a defined set of 

metrics is tracked. This includes the total count and age 

distribution of active trust relationships, the average time 

required to revoke a trust, and the percentage of services 

isolated by environment, which should remain at or 

above ninety five percent. Policy as code frameworks, 

automated account inventory systems, and compliance 

snapshot tools are deployed to enforce these standards at 

scale, ensuring that deviations are promptly detected and 

remediated. Exceptions to these rules are permissible 

only under the explicit authorization of the security 

leadership, with every deviation logged, justified, and 

subject to post event review.  

By adopting such a rigorously controlled account 

architecture, organizations not only reduce their 

operational attack surface but also gain a robust 

foundation for sustainable security governance, adaptive 

threat response, and demonstrable compliance with 

prevailing cloud security benchmarks.  

2.2. Identity and Access Management (IAM). 

Identity and Access Management (IAM) is a key 

component of cloud infrastructure security, ensuring 

control over authentication, authorization, and 

accountability for user and service actions. The goal is to 

provide access only to those subjects who need it, for the 

minimum possible time, while fully eliminating long-lived 

human credentials. 

Mandatory requirements include 100% use of multi-

factor authentication (MFA) for all human accounts and a 

complete ban on static access keys. It is recommended to 

enforce short time-to-live (TTL) values for elevated 

privilege sessions and apply Permission Boundaries to 

limit the maximum privilege scope. In exceptional cases 

(“break-glass” access), temporary privilege escalation is 

allowed with mandatory auditing and automatic session 

termination. 

These rules apply to all human access channels and 

to critical machine integrations. Exceptions are permitted 

only for service roles operating in trusted environments. 

The main rationale is to reduce the attack window in case 

of credential compromise and to prevent privilege 

escalation, in alignment with CIS and NIST 

recommendations. 

The process includes issuing short-lived sessions 

through an Identity Provider (IdP), splitting administrative 

duties between teams, regularly reviewing IAM policies, 

and immediately revoking access upon role changes or 

employee termination. 

Key artifacts include a catalog of roles and policies, 

authentication logs, and privilege escalation reports. 

Acceptance criteria: MFA coverage at 100%, no static 

access keys, and session TTL values within defined 

thresholds. 
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Metrics: MFA coverage rate, median session TTL, 

access deactivation time, and the ratio of allowed to denied 

authorization requests. Automation is supported through 

federation platforms, IAM analytics, and sign-in 

monitoring. Exceptions are documented in writing, time-

boxed, logged in the tracking system, and approved by the 

security lead. 

2.3. Secrets and Certificate Management. Secrets 

and certificate management is a critical aspect of securing 

modern cloud-based and distributed systems. The primary 

goal is to eliminate the presence of sensitive credentials 

such as API keys, passwords, and private keys from 

source code repositories, container images, or other static 

artifacts, and to ensure a managed, auditable lifecycle for 

all secrets, keys, and certificates. 

Mandatory requirements include the use of a 

centralized secret management system as the single 

authoritative store for all sensitive credentials, and the 

enforcement of runtime injection for secret delivery to 

applications and services. This approach prevents 

credentials from being embedded in code or stored in 

persistent images. It is recommended to implement 

automatic rotation of secrets and certificates and to 

maintain a full audit trail of all access and read operations. 

In some cases, short-lived tokens or leases may be issued 

to further reduce the attack surface. 

These controls apply to all environments, from 

development to production. Exceptions are permitted only 

for fully isolated sandbox environments that have no 

connectivity to production data or systems. Centralizing 

secret management reduces the potential exfiltration 

surface, while runtime injection aligns with best practices 

outlined by OWASP and CIS benchmarks, ensuring that 

secrets never persist outside secure, controlled channels. 

The standard process begins with defining access 

segmentation, ensuring that read permissions are granted 

only to the components or individuals that strictly require 

them. Rotation policies must be defined for each secret 

type, along with rules for certificate lifetime management. 

Systems should trigger alerts as certificates approach 

expiration (time-to-expiry, TTE) and conduct routine 

rotation drills to verify operational readiness. 

Artifacts generated from this process include a 

complete registry of secrets, documented rotation 

policies, detailed access and rotation logs, and an up-to-

date inventory of certificates. Acceptance criteria include 

zero occurrences of secrets in code repositories or 

container images, full validity of all certificates in use, and 

successful completion of rotation drills within the defined 

operational window. 

Key metrics include the average and maximum age 

of secrets, a minimum of 90% automated secret and 

certificate rotation coverage, zero recorded incidents of 

“secret found in code,” and maintaining a defined TTE 

buffer for certificates to avoid unexpected expirations. 

Automation and tooling typically involve the use of 

centralized secret storage platforms, key management 

services (KMS), public key infrastructure (PKI) systems, 

leak detection scanners, and dashboards for monitoring 

secret age and certificate validity. 

All exceptions must clearly designate an owner and 

an expiration date, be logged in the security tracking 

system, and be reviewed during each sprint to ensure 

timely remediation and risk minimization. 

2.4. Networks, Micro‑segmentation, and 

Controlled Egress. Network segmentation and 

controlled egress are foundational elements of a secure 

cloud and microservices architecture. The primary goal is 

to minimize the attack surface by enforcing a privacy-by-

default approach, ensuring that only explicitly approved 

communication paths are available, and that outbound 

traffic is subject to strict control. 

Mandatory requirements include enforcing a deny-

by-default policy for all east–west (service-to-service) 

traffic and allowing public endpoints only when strictly 

necessary. It is recommended to establish mandatory 

Transport Layer Security (TLS) encryption for all inter-

service communications and to use outbound traffic 

allow-lists or egress gateways to control external 

connectivity. 

The scope covers all environments where services 

interact with each other or initiate outbound connections 

to the Internet, including production, staging, and critical 

development environments. The rationale is that network 

micro-segmentation replaces broad, permissive rules with 

fine-grained service identity–based controls, significantly 

reducing the likelihood of lateral movement by attackers. 

Similarly, outbound traffic control mitigates data 

exfiltration risks and blocks command-and-control (C2) 

channels commonly used in advanced persistent threats 

(APTs). 

The canonical process begins by defining and 

documenting network perimeters and categorizing 

workloads into perimeter, application, and data tiers. 

Access control lists (ACLs) and security group policies 

are then configured to enforce segmentation rules. TLS 

encryption is applied to all service-to-service 

communications, with automated verification where 

possible. Segmentation and policy rules are periodically 

tested using penetration testing tools or simulation 

frameworks to ensure continued enforcement and to 

identify misconfigurations. 

Artifacts include up-to-date segmentation diagrams, 

complete rule lists with justifications, test reports from 

segmentation validation exercises, and an inventory of all 

public endpoints in the environment. Acceptance criteria 

include the complete absence of “any-any” rules, the 

presence of only minimal and justified public endpoints, 

and active TLS protection for internal communication 

paths. 

Key metrics include the total number of public 

endpoints, the percentage of internal communication 

paths protected by TLS (target ≥ 80%), the number of 

blocked unauthorized egress attempts, and the average 

lead time for implementing approved policy changes. 

Recommended tooling and automation components 

include network policy controllers, distributed denial-of-

service (DDoS) protection services, automated egress 

inventory tools, and real-time network event analyzers 

capable of detecting anomalous traffic flows. 
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Exceptions are permitted only on a temporary basis, 

must have a defined end date, and require escalation to the 

environment owner and the security team. All exceptions 

must be documented, monitored, and reviewed for closure 

before their expiration date. 

2.5. Encryption and Key Management. 

Encryption and key management form the backbone of 

data confidentiality and integrity in any secure cloud or 

distributed system. The primary goal is to ensure that 

sensitive data remains protected both at rest and in transit, 

while maintaining an operational model that does not 

introduce excessive complexity or latency. 

Mandatory requirements include 100% encryption 

coverage for all sensitive data (both at rest and in transit) 

using industry-accepted algorithms and protocols. At-rest 

encryption must be enforced through managed encryption 

services or equivalent, while in-transit encryption must 

rely on modern TLS configurations. It is recommended to 

maintain a separation of duties between data and key 

ownership to reduce the likelihood of insider threats, and 

to schedule planned cryptographic key rotations to limit 

the impact of potential key compromise. Where feasible, 

hardware-based roots of trust (e.g., HSMs) may be 

incorporated to strengthen assurance levels. 

The scope applies to all data storage systems 

(databases, object storage, file systems) and all transport 

channels that handle sensitive or regulated data. The 

rationale is that establishing dedicated key hierarchies per 

data classification category minimizes the blast radius in 

the event of compromise, while strict TLS validation 

prevents interception, replay attacks, and data tampering 

during transmission. 

The canonical process begins with the design of a 

multi-tiered key hierarchy, where master keys are used to 

encrypt data encryption keys (DEKs) for specific datasets 

or services. Certificate issuance and revocation must be 

automated to avoid manual intervention delays. Regular 

validation of TLS versions and cipher suites ensures 

alignment with current security baselines. Planned key 

rotation exercises must be executed in a way that avoids 

downtime or data loss, and these tests should be 

documented and repeatable. 

Artifacts include a centralized registry of all keys 

and certificates, rotation policy documents, cryptographic 

operation logs, and documented test protocols for rotation 

drills. Acceptance criteria require full encryption 

coverage, the maintenance of a time-to-expiry (TTE) 

buffer for all certificates to prevent unexpected expiration, 

and the successful execution of rotation tests without data 

corruption or service interruption. 

Metrics include encryption coverage (target 100%), 

average and maximum cryptographic key age, the 

percentage of network traffic secured with modern TLS 

versions, and the number of TLS-related connection 

failures. These metrics provide direct visibility into the 

security posture of the system and help drive timely 

remediation. 

Recommended tools and automation frameworks 

include key management services (KMS), public key 

infrastructure (PKI) solutions, automated certificate 

management platforms, and TLS verification utilities. 

Exceptions are extremely limited and must be 

publicly tracked within the organization, have a defined 

closure date, and be approved by the security governance 

board. All exceptions must be reviewed prior to expiration 

and either remediated or formally extended with 

documented justification. 

2.6. Data, Privacy, and Lifecycle. Effective data 

lifecycle management combined with strict privacy 

controls is essential for minimizing risks to personal and 

sensitive information while ensuring compliance with 

applicable legal and regulatory frameworks. The primary 

goal is to handle all data according to clearly defined 

classification, retention, residency, and access policies, 

ensuring that sensitive data remains both secure and 

auditable throughout its lifecycle. 

Mandatory requirements include comprehensive 

data classification and minimization practices, ensuring 

that only necessary data is collected and retained. Data 

retention periods must be explicitly defined, documented, 

and enforced. Geographic residency requirements should 

be implemented where applicable, especially for data 

subject to jurisdictional restrictions such as GDPR or 

CCPA. All backups must be tested regularly to ensure 

recoverability, and access to sensitive data fields must be 

logged in detail for audit and compliance purposes. 

The scope covers all systems, storage repositories, 

and data flows that handle personal or sensitive 

information, as well as all access log records associated 

with such data. The rationale is that implementing object 

level and field level access controls enforces the principle 

of “only access your own data,” which significantly 

reduces the risk of unauthorized exposure. Regular 

disaster recovery (DR) testing ensures that business 

continuity can be maintained even in the event of data loss 

or system compromise. 

The canonical process involves creating a detailed 

data catalog that categorizes all datasets by sensitivity and 

applicable regulatory requirements. Retention and geo 

residency policies must be defined for each category, and 

access control mechanisms, whether Attribute Based 

Access Control (ABAC) or Role Based Access Control 

(RBAC), should be applied down to the field level where 

applicable. Data subject rights (DSR) tooling should be 

implemented to support regulatory requests such as data 

access, correction, and deletion. DR tests must be 

conducted to ensure recovery point objectives (RPO) and 

recovery time objectives (RTO) are met without 

compromising data integrity. 

Artifacts include the data catalog, retention and geo 

residency policy documents, detailed access logs for 

sensitive fields, and records of DR testing outcomes. 

Acceptance criteria require at least 95 percent valid 

classification coverage, adherence to all defined geo 

residency requirements, and demonstrated ability to 

perform DR recoveries within established RPO and RTO 

targets. 

Key metrics include the percentage of datasets with 

valid classification, DSR service level agreement (SLA) 

compliance rate, DR test success rate, and the count of 

sensitive field access events accompanied by a complete 
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audit trail. These metrics provide continuous insight into 

the maturity of data governance and operational readiness. 

Recommended tools and automation capabilities 

include Data Loss Prevention (DLP) and Information 

Rights Management (IRM) systems, enterprise grade data 

catalogs, field level access enforcement mechanisms, and 

automated DSR request management platforms. 

Exceptions are not permitted for production 

environments containing sensitive personal data. The only 

permissible deviations apply to anonymized datasets, 

which must be processed under a separate documented 

procedure with explicit review and approval by the data 

governance team. 

2.7. Application Lifecycle and DevSecOps. The 

integration of security into every stage of the Software 

Development Life Cycle (SDLC) is a fundamental 

principle of modern application engineering. The primary 

goal is to ensure that security controls are applied 

consistently and effectively throughout development, 

testing, deployment, and maintenance, without 

introducing delays that would critically impact release 

schedules. 

Mandatory requirements include the 

implementation of quality gates for Static Application 

Security Testing (SAST), Dynamic Application Security 

Testing (DAST), Software Composition Analysis (SCA), 

container image scanning, Infrastructure as Code (IaC) 

validation, and automated detection of hardcoded secrets. 

Policy as code approaches are strongly recommended to 

ensure that security rules are versioned, auditable, and 

automatically enforced. The generation and maintenance 

of a Software Bill of Materials (SBOM) is also 

recommended to improve visibility into dependencies and 

to facilitate faster responses to vulnerabilities. All build 

artifacts must be digitally signed, and signature 

verification must be performed at deployment time to 

guarantee supply chain integrity. 

This policy applies to all code, infrastructure 

definitions, and configuration changes destined for 

production environments. The rationale for these 

measures is clear: implementing security gates early in the 

SDLC significantly reduces the cost and complexity of 

remediating vulnerabilities, while SBOM and artifact 

signing establish trust in the software supply chain and 

accelerate remediation of Common Vulnerabilities and 

Exposures (CVE). 

The canonical process involves strict isolation of 

build and runtime environments to prevent contamination 

of production systems. All external dependencies must be 

sourced from verified repositories, and their versions 

should be pinned to prevent unverified updates. Base 

images should be updated regularly with the latest 

security patches. During the build process, the SBOM 

must be generated and stored in a secure repository. All 

artifacts are digitally signed, and their signatures are 

verified automatically during deployment to prevent 

tampering. 

Artifacts generated during this process include 

security gate reports, CVE tracking lists, current SBOM 

files, and digital signature metadata confirming artifact 

provenance. Acceptance criteria require that no critical 

CVEs are present at the time of release, that the SBOM is 

up to date, and that all production artifacts have been 

signed and verified. 

Key metrics include mean time to remediate critical 

CVEs, the percentage of builds passing all security gates, 

SBOM coverage percentage, the percentage of 

reproducible builds, and the policy as code compliance 

rate. These metrics provide objective evidence of the 

security posture and operational efficiency of the 

DevSecOps process. 

Recommended tools and automation solutions 

include integrated SAST and DAST scanners, SCA tools 

for dependency analysis, container and IaC scanners, 

artifact signing frameworks, and policy enforcement 

controllers. 

Exceptions to these rules are permitted only with 

documented approval from the security technical board, 

and all such exceptions must undergo a post 

implementation retrospective to identify root causes and 

prevent recurrence. 

2.8. Observability and Incident Response (IR). 

Ensuring rapid detection and effective resolution of 

security incidents requires comprehensive observability 

combined with a structured incident response framework. 

The primary goal is to minimize the Mean Time to Detect 

(MTTD) and the Mean Time to Recover (MTTR) by 

providing complete visibility into system behavior, 

enabling correlation of telemetry data, and establishing 

well-trained operational procedures. 

The policy mandates the collection and storage of 

centralized control and data plane logs across all 

environments. All logs must follow unified schemas and 

contain standardized timestamps to ensure accurate 

correlation. The use of correlation identifiers is strongly 

recommended, as it enables linking logs, metrics, and 

traces associated with a single transaction or event. 

Distributed tracing should be implemented to capture end-

to-end execution flows, while risk-oriented alerting 

should prioritize incidents with the highest potential 

impact. 

This framework applies to all operational 

environments, including non-production systems where at 

least minimal logging is required to ensure the ability to 

reproduce incidents. The rationale is straightforward: the 

integration of log, metric, and trace data under a unified 

correlation identifier significantly accelerates forensic 

analysis, while the combination of signature-based 

detection with behavioral anomaly analysis reduces the 

likelihood of missing novel threats. 

The canonical process begins with the integration of 

log, metric, and trace streams into a central observability 

platform. Alert thresholds and priorities are calibrated 

based on historical data and evolving threat models. 

Incident response drills are conducted regularly according 

to documented runbooks to maintain operational 

readiness. The effectiveness of alerting mechanisms is 

continuously evaluated through the measurement of 

precision, recall, and ingestion latency. 

Artifacts generated in this process include log 

schema catalogs, operational dashboards, incident 

response runbooks, and journals of completed drills. 
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Acceptance criteria require that all key security-relevant 

actions are sufficiently logged, that trace coverage meets 

or exceeds defined targets, and that alerting systems 

maintain precision and recall within predefined 

performance bounds. MTTD and MTTR must remain 

within target thresholds agreed upon by stakeholders. 

Metrics used for evaluation include MTTD and 

MTTR, the proportion of events with complete log-

metric-trace correlation, average log ingestion latency, 

alert precision and recall rates, and the percentage of 

monitored transactions covered by distributed tracing. 

These metrics provide a quantifiable basis for evaluating 

both the detection capabilities and operational 

responsiveness of the system. 

Recommended tooling and automation include 

centralized log collection services, application 

performance monitoring (APM) and tracing frameworks, 

incident management systems, and security analytics 

platforms capable of advanced correlation and anomaly 

detection. 

Exceptions to these requirements are strictly limited. 

Disabling production logging or alerting mechanisms is 

prohibited without explicit approval from the designated 

incident response lead. Any authorized outage must be 

time-limited, fully documented, and include a plan for 

service restoration and post-event review. 

2.9. Resilience, Fault‑Tolerance, and 

Availability. Ensuring the resilience, fault tolerance, and 

high availability of systems is essential for maintaining 

agreed Service Level Objectives (SLO) and Service Level 

Agreements (SLA) even under adverse conditions such as 

component failures, network partitions, or sudden 

workload peaks. The goal is to guarantee that critical 

services continue to operate within performance and 

reliability targets while preventing cascading failures 

across dependent components. 

The policy requires redundancy across multiple 

availability zones or regions for all critical services. This 

geographic and infrastructural separation minimizes the 

risk of complete service loss due to localized outages. 

Autoscaling mechanisms are recommended to 

dynamically adjust capacity based on demand, ensuring 

that resources are neither underutilized during low traffic 

periods nor overwhelmed during traffic surges. 

Additional architectural patterns such as bulkheads, 

circuit breakers, and rate-limiting are recommended to 

isolate failures and control traffic flow. Disaster recovery 

(DR) plans must exist for all critical services and undergo 

regular, controlled testing to verify readiness. 

This framework applies to all components and 

services with strict SLO requirements. For less critical 

systems, partial implementation is possible, but still 

within a structured degradation plan. The rationale is that 

designing for idempotency and incorporating message 

queues helps mitigate data duplication and loss during 

partial failures, while chaos engineering experiments can 

reveal weaknesses before real incidents occur. 

The canonical process begins with the separation of 

stateful and stateless components, followed by the 

introduction of message queues to decouple services and 

absorb transient spikes. Continuous health checks, self-

healing mechanisms, and automated failover procedures 

are implemented to ensure swift recovery from failures. 

Regular disaster recovery drills and controlled chaos 

experiments validate the operational readiness of the 

system and refine incident playbooks. 

Artifacts generated in this process include SLO 

monitoring dashboards, error budget reports, detailed 

disaster recovery and chaos experiment protocols, and 

predefined service degradation plans. Acceptance criteria 

require that SLO targets are consistently met, that disaster 

recovery and chaos engineering tests are documented, and 

that corrective actions from these tests are implemented 

within agreed timelines. 

Key metrics include SLO attainment rates, error 

budget burn rates, failover execution times, autoscaling 

reaction times, available capacity headroom, and the 

percentage of chaos experiments completed successfully. 

These metrics provide an evidence-based evaluation of 

the system’s resilience posture and its ability to recover 

from faults without breaching contractual commitments. 

Recommended tools and automation include 

container orchestrators with built-in health management, 

autoscaling frameworks, queue managers for 

asynchronous communication, and specialized platforms 

for chaos engineering. 

Exceptions are not permitted for services forming 

part of business-critical workflows. For non-critical 

systems, exceptions may follow an approved degradation 

plan that ensures graceful service reduction rather than 

abrupt outages. All exceptions must be documented and 

subject to periodic review. 

2.10. Configuration Baselines, Patch 

Management, and Compliance. The objective of 

configuration baselines, patch management, and 

compliance enforcement is to minimize the risk of 

misconfigurations, reduce the time between the discovery 

of vulnerabilities and their remediation, and ensure that all 

systems remain consistently aligned with organizational 

benchmarks and security policies. Maintaining 

standardized and verified configurations across all 

environments strengthens the security posture by reducing 

variability, which is a common source of operational and 

security failures. 

The policy requires the use of standardized base 

images and configuration profiles for all systems, 

including production services, development 

environments, continuous integration and continuous 

delivery (CI/CD) pipelines, and administrative 

workstations. Continuous compliance scanning must be 

implemented to detect configuration drift in real time. 

Critical patches should be applied within a predefined 

Service Level Agreement (SLA) timeframe, and any 

exceptions to this process should be strictly managed, 

time-bound, and formally approved. 

This framework applies to all infrastructure 

components and services regardless of their criticality. 

While some non-critical systems may receive delayed 

patching under controlled circumstances, all deviations 

from the baseline must be justified, documented, and 

monitored. The rationale is that unified configuration 

profiles greatly reduce the likelihood of human error, 
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while continuous compliance monitoring identifies and 

addresses deviations before they become exploitable 

vulnerabilities. This approach aligns with the 

recommendations of industry standards such as CIS 

Benchmarks, NIST guidelines, and the AWS Well-

Architected Framework Security Pillar. 

The canonical process begins with the definition and 

maintenance of baseline configurations that meet both 

security and operational requirements. These baselines 

are stored in version-controlled repositories to ensure 

traceability. Automated drift detection tools monitor all 

systems, triggering alerts or initiating remediation 

workflows when deviations are detected. Safe deviations 

can be remediated automatically, while high-impact 

changes require manual intervention. Exceptions must 

include an assigned owner and an expiration date, and 

evidence of remediation activities must be securely stored 

for auditing purposes. 

Artifacts generated by this process include the 

configuration baseline profiles, the exception registry, 

compliance scan reports, and remediation evidence logs. 

Acceptance criteria include maintaining a compliance 

score above the defined threshold, ensuring that critical 

patches are deployed within the agreed SLA, and having 

no overdue exceptions in the registry. 

Key metrics for monitoring this control include the 

mean time to apply patches, the overall compliance score, 

the rate of configuration drift, the count and average age 

of exceptions, and adherence to remediation SLAs. These 

metrics are vital for evaluating the efficiency and 

consistency of the configuration management process and 

for demonstrating compliance during external or internal 

audits. 

Recommended tooling and automation include 

compliance scanning platforms, patch management 

solutions, policy-as-code frameworks for consistent 

enforcement, and automated evidence reporting systems 

for audit readiness. 

Exceptions are only permitted when approved by the 

security technical board and must be recorded in a 

publicly accessible tracking system with a clearly defined 

closure date. Regular reviews of exception status are 

mandatory to ensure that deviations are resolved within 

their approved timeframes. 

3. System Description, Figures, Experiments and 

Results 

The proposed security architecture represents a 

stratified control system that integrates multiple, mutually 

reinforcing layers of defense. Its core structure 

encompasses the following domains: account-level trust 

boundaries, granular network micro-segmentation, 

Identity and Access Management (IAM) with short-lived 

credentials, centralized secrets management, pervasive 

encryption, DevSecOps gates integrated into the software 

delivery lifecycle, and an observability and incident 

response (IR) framework. These elements collectively 

form a “defense-in-depth” model designed to minimize 

the attack surface, reduce detection and recovery times, 

and ensure compliance with established security 

benchmarks.  

Fig.1. Security posture comparison 

Fig.2. Quarterly trend driven by centralized logging/tracing 

and improved IR runbooks 

Figure 1 illustrates a comparative analysis of 

security postures for three operational profiles: “open” 

systems with minimal controls, “partially secured” 

systems with selective implementation of safeguards, and 

“defense-in-depth” systems with comprehensive, 

integrated security measures. Key performance indicators 

include the risk index, Mean Time to Detect (MTTD), 

Mean Time to Recover (MTTR), and overall control 

coverage. The results clearly show that a defense-in-depth 

approach substantially reduces the risk index while 

improving detection and recovery times, as well as 

increasing the percentage of implemented security 

controls. 

Figure 2 depicts a quarterly trend analysis of MTTD 

and MTTR improvements driven by the adoption of 

centralized logging, distributed tracing, and enhanced IR 

runbooks. The downward trend in both metrics over 

successive quarters demonstrates the tangible operational 

impact of continuous observability, precise correlation of 

telemetry, and rehearsed incident-handling procedures. 

4. Discussion of results 

The adoption of a comprehensive, multi-layered 

security framework inevitably introduces operational 

complexity. As security controls proliferate, the 

configuration surface expands, increasing the likelihood 

of misconfigurations if not rigorously governed. More 

granular controls and monitoring generate a larger 

volume of telemetry, which, while improving 

observability, also raises the risk of alert fatigue among 

operators. Excessive logging and tracing lead to higher 

storage costs, more complex indexing, and increased 
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computational overhead for analytics. Furthermore, 

stringent patch management cycles and compliance 

checks can delay feature releases or maintenance 

windows, especially in high-change environments. 

This complexity has a measurable commercial 

impact. Each additional safeguard not only demands 

engineering resources for its implementation but also 

requires continuous investment in monitoring, auditing, 

and updating. For organizations with lean budgets or 

systems that handle minimal sensitive data, such 

investment can appear disproportionate to the perceived 

risk. In such contexts, a reduced or selectively applied 

control model may be sufficient. However, for platforms 

handling high-volume personal, financial, or mission-

critical data, the benefits of comprehensive security 

overwhelmingly outweigh the drawbacks. 

The advantages manifest across several dimensions. 

First, Mean Time to Detect (MTTD) and Mean Time to 

Recover (MTTR) typically decrease when telemetry 

correlation, automated incident response playbooks, and 

proactive anomaly detection are integrated. Second, the 

system’s predictability and auditability improve, 

enabling faster and more confident responses to partner 

audits, certification reviews, and compliance 

assessments. Third, alignment with recognized 

benchmarks and standards (e.g., CIS AWS Foundations 

Benchmark, OWASP, NIST) increases stakeholder trust 

and market competitiveness. 

Balancing these factors requires deliberate design 

choices. Risk-oriented logging ensures that high-value 

events are captured in detail, while low-impact noise is 

minimized through sampling and aggregation 

techniques. Data retention policies help control storage 

growth, ensuring that only the most relevant and legally 

required data is kept. Automated remediation for 

common misconfigurations or expired credentials 

reduces manual toil, lowers incident count, and supports 

faster recovery. Service Level Objective (SLO)-driven 

operations ensure that the degree of security enforcement 

aligns with the business’s uptime and performance 

commitments. 

A sustainable approach also requires cultural 

alignment between Security Operations (SecOps) and 

Site Reliability Engineering (SRE) teams. Cross 

functional collaboration ensures that security measures 

are integrated in a manner that does not undermine 

availability or performance objectives. Furthermore, 

incorporating structured post mortem reviews into the 

feedback loop ensures that the lessons learned from 

incidents are directly applied to the refinement of 

policies, controls, and automation scripts. This 

continuous improvement process reduces the probability 

of incident recurrence and contributes to the progressive 

maturity of the security program over time. 

5. Conclusions 

This study has presented a structured and internally 

consistent scaffold of security policies and operational 

practices, explicitly mapped to internationally 

recognized frameworks and standards including NIST, 

ISO 27001, Cloud Security Alliance (CSA), CIS 

Benchmarks, and the OWASP Top Ten. Each practice is 

supported by clearly defined processes, documented 

artifacts, quality gates, and measurable metrics, ensuring 

that implementation is both verifiable and repeatable 

across different organizational contexts. 

The proposed layered security stratification, which 

includes account and trust boundary management, 

network micro-segmentation, identity and access 

controls, data governance, application-level protections, 

DevSecOps integration, and observability, significantly 

reduces the overall attack surface. This stratification also 

enhances auditability and regulatory compliance by 

creating discrete, independently verifiable security 

zones. 

The integration of observability across logs, 

metrics, and distributed traces accelerates root-cause 

localization during incidents. By enabling high-fidelity 

correlation and anomaly detection, the approach 

demonstrably shortens Mean Time to Detect (MTTD) 

and Mean Time to Recover (MTTR), thereby directly 

supporting agreed Service Level Agreements (SLA) and 

improving operational resilience. 

DevSecOps practices, including the implementation 

of security gates at multiple stages of the software 

delivery lifecycle, generation of Software Bills of 

Materials (SBOM), and cryptographic signing with 

deploy-time verification of artifacts, strengthen supply 

chain trust. These measures reduce the likelihood of 

production-level vulnerabilities being introduced 

through third-party dependencies, misconfigurations, or 

unverified build processes. 

Recognizing the inherent trade-offs between 

security, operational complexity, and cost, the 

framework incorporates mitigating strategies such as 

automated remediation, risk-oriented telemetry 

collection, well-defined retention policies, and 

disciplined compliance tracking. These strategies help 

maintain an optimal balance between security assurance 

and operational efficiency, making the approach 

adaptable to both high-security and cost-sensitive 

environments. 
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АРХІТЕКТУРНІ ПРИНЦИПИ ТА ОПЕРАЦІЙНІ ПРАКТИКИ ПОБУДОВИ БЕЗПЕЧНОЇ ЦИФРОВОЇ 

ІНФРАСТРУКТУРИ В ХМАРНИХ СЕРЕДОВИЩАХ 

В. О. Максимов  

Анотація .  Актуальність. Інтернет-екосистеми розвиваються швидше, ніж традиційні життєві цикли 

підприємств, що призводить до постійної появи нових векторів атак та зростання ризиків витоку даних, їх втрати та 

порушення рівня наданих послуг (SLA). Безпека більше не обмежується лише властивостями коду, а є наскрізною 

характеристикою всієї екосистеми, яка охоплює ідентичності, мережі, дані, додатки, процеси та телеметрію. Предмет 

дослідження. Багаторівнева безпека для хмарних інфраструктур та веб-застосунків, що поєднує підхід Zero Trust, 

концепцію «захист у глибину» (Defense in Depth), керування секретами, контроль конфіденційності, практики DevSecOps 

та кореляцію журналів, метрик і трасувань. Мета. Створення відтворюваного каркасу архітектурних принципів та 

операційних практик, що зменшують площину атаки, скорочують показники MTTD та MTTR, підтримують виконання 

SLO та SLA, а також сприяють узгодженню з контрольними каталогами, такими як CIS AWS Foundations, та галузевими 

стандартами, включно з NIST SP 800-207, NIST SP 800-53, ISO/IEC 27001, CSA CCM та OWASP Top Ten. Методи. Ізоляція 

середовищ та довірчих меж; рольовий доступ із багатофакторною автентифікацією та короткостроковими обліковими 

даними; централізоване керування секретами та їх ротація; приватні мережі та мікросегментація; повсюдне шифрування 

даних під час зберігання та передавання; контроль життєвого циклу та конфіденційності даних; впровадження 

контрольних точок безпеки в CI/CD; стандартизовані конфігураційні базові профілі та постійне сканування на 

відповідність вимогам; централізоване журналювання, розподілене трасування та керована реакція на інциденти. 

Результати. Розроблено детальний набір політик і підпрактик з чітко визначеними цілями, процедурами, артефактами, 

критеріями приймання та метриками; підготовлено узагальнені схеми, що відображають рівень безпеки; складено 

таблицю операційних цілей; виконано аналіз ролі спостережуваності у скороченні MTTD та MTTR. Висновки. Інтеграція 

стандартів безпеки та механізмів спостережуваності як у архітектуру системи, так і в операційний життєвий цикл 

підвищує стійкість системи, покращує можливості аудиту та забезпечує контрольованість ризиків при збереженні 

прийнятного рівня операційних витрат. 

Ключові  слова :  безпека хмарних середовищ; практики безпеки AWS; архітектура Zero Trust; захист у глибину; 

захист даних; керування кіберризиками; безпечний життєвий цикл розробки ПЗ; безпека додатків; сегментація мережі; 

шифрування; моніторинг та спостереження; реагування на інциденти; відповідність вимогам. 
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