
ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

39

UDC 004.056.55 doi: https://doi.org/10.20998/3083-6298.2025.02.05

Pavlo Kovalov1

1Yaroslav Mudryi National Law University, Kharkiv, Ukraine

SECURING DATA EXCHANGE CHANNELS BETWEEN PYTHON APPLICATIONS

USING CRYPTOGRAPHIC LIBRARIES

Abstract. Topicality. The increasing reliance on distributed applications highlights the urgent need for secure data exchange

channels between software components. Without appropriate protection, communication is exposed to threats such as eavesdropping,

spoofing, tampering, and replay attacks. The subject of study in the article is the use of Python’s cryptographic libraries (cryptography,

PyNaCl) for constructing lightweight yet robust security layers on top of existing communication mechanisms. The purpose of the

article is to present a practical and reproducible method for securing message flows by combining symmetric encryption (AES-GCM),

ephemeral key exchange (X25519), key derivation (HKDF with SHA-256), and digital signatures (Ed25519). The following results

were obtained. The proposed model integrates authenticated encryption with associated data (AEAD) and session counters to mitigate

replay risks, while maintaining compatibility with various transports such as HTTP, gRPC, and MQTT. The study provides minimal,

clear code examples and performance measurements showing that the system achieves encryption and decryption in less than one

millisecond for typical payloads, with key exchange and signature operations adding only a few milliseconds. These results demonstrate

that strong cryptographic protection can be achieved without significant performance penalties. Conclusion. The findings confirm the

suitability of the proposed scheme for real-time distributed systems, microservices, and IoT environments. Future improvements may

include post-quantum cryptography integration and automated key management.

Keywords: Python applications; secure communication; AES-GCM; X25519; Ed25519; HKDF; replay protection.

Introduction

Problem Relevance. Distributed applications form

the foundation of today’s information systems. They

constantly exchange data through network protocols,

APIs, or message queues. These data exchanges may

include service events, user identifiers, access tokens,

financial transactions, or files with confidential

information.

If such data are transmitted without protection, they

become vulnerable to a range of attacks, including:

● Eavesdropping – an attacker intercepts and reads

the data in transit.

● Spoofing – impersonation of a sender or receiver.

● Tampering – unauthorized modification of

messages.

● Replay attacks – resending previously captured

messages to deceive the system.

Python is one of the most widely used programming

languages globally. It powers web servers, microservices,

automation systems, and IoT solutions. All of these

systems rely heavily on secure data exchange, making this

problem highly relevant for both researchers and

practitioners.

Fortunately, Python provides mature libraries for

cryptography, such as cryptography, PyNaCl, and the

standard hashlib. They allow developers to design hybrid

protection schemes that combine:

● symmetric encryption (e.g., AES-GCM,

ChaCha20-Poly1305) for fast traffic protection;

● asymmetric key exchange (e.g., X25519, RSA) for

secure key distribution;

● digital signatures (e.g., Ed25519, RSA-PSS) for

authentication;

● hashing for integrity verification.

Literature Review. Research and standards

emphasize that no single cryptographic primitive can ensure

full security. Instead, robust systems combine multiple

primitives.

The best practices are:

● AES-GCM or ChaCha20-Poly1305 –

authenticated encryption with associated data (AEAD)

for data confidentiality and authenticity.

● X25519 or RSA-OAEP – secure key exchange.

● Ed25519 or RSA-PSS – digital signatures to

verify authenticity.

● HKDF (SHA-256) – for key derivation.

● Key lifecycle management – including rotation,

secure storage, and audit policies.

In Python, these cryptographic patterns are directly

available through open-source libraries such as

cryptography and PyNaCl.

Purpose and Research Objectives. Purpose: to

demonstrate a practical method for building a secure

communication channel between Python components

without complex mathematical formulas, using minimal,

simple code examples.

Objectives:

1. Select modern cryptographic primitives that

comply with security standards.

2. Demonstrate a simple key exchange

mechanism.

Implement message encryption and decryption.

3. Add digital signatures and verification for

service data.

4. Introduce counters and protocol versions to

mitigate replay attacks.

5. Evaluate performance and propose practical

recommendations for key rotations [1, 2].

1. Implementing Secure Data Transmission

Between Python Applications

Symmetric encryption is the foundation of secure

communication. It uses the same key for encryption and

decryption and is known for its speed and efficiency,

making it suitable for real-time systems.

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

40

AES in Galois/Counter Mode (AES-GCM) is widely

regarded as the most practical choice, because it provides

both confidentiality and integrity.

Fig. 1. Secure data transfer between Python programs using

symmetric encryption

Key rules:

● Never reuse the same nonce with the same key.

● Place metadata (e.g., protocol version, session

ID, message sequence number) in AAD for integrity

protection.

● Handle keys securely: they should not be

hardcoded or logged.

This simple example shows how developers can

encrypt and authenticate messages in just a few lines of

code.

The significance of this implementation lies in its

simplicity: a complete cycle of encryption and decryption

can be expressed in fewer than ten lines of Python code,

yet the underlying cryptographic protection is on par with

industry standards used in TLS and VPNs. This makes

AES-GCM particularly attractive for developers who need

to integrate security into their systems without building a

complex infrastructure from scratch.

AES-GCM works by combining counter mode

encryption with the Galois Message Authentication Code

(GMAC). Counter mode provides confidentiality by

transforming AES into a stream cipher, while GMAC

ensures message integrity by producing an authentication

tag. The result is an Authenticated Encryption with

Associated Data (AEAD) scheme, which simultaneously

solves two critical problems: keeping the data secret and

guaranteeing that it has not been tampered with. Unlike

traditional approaches that used AES in CBC mode

combined with a separate HMAC, AES-GCM integrates

both tasks into a single efficient operation [4,5].

Another powerful concept in this scheme is the

inclusion of Additional Authenticated Data (AAD). AAD

allows applications to bind non-secret information—such

as protocol versions, session identifiers, or sequence

numbers—directly into the authentication process.

Although this metadata is not encrypted, it becomes

cryptographically tied to the message. If an attacker

attempts to alter or remove this information, the

decryption will fail. This ensures not only confidentiality

but also structural integrity of the communication protocol

itself.

Practical Considerations. In practice, the choice of

nonce generation and key management is just as important

as the encryption algorithm. Developers must ensure that

every nonce used with a given key is unique; otherwise,

the security guarantees of AES-GCM collapse. A common

strategy is to derive nonces from sequence numbers or

counters, guaranteeing uniqueness even under high loads.

Key management should be automated wherever

possible—manual handling or hardcoding keys into

source code is one of the most common security mistakes

in real-world deployments.

Furthermore, AES-GCM benefits significantly from

hardware acceleration. Many modern processors include

dedicated AES instructions, which allow encryption and

decryption to be executed at near memory-copy speeds.

This means that the cryptographic overhead for protecting

each message is often negligible compared to the cost of

transmitting the data over a network. In distributed

systems with thousands of transactions per second, this

property ensures that strong encryption can be deployed

universally without sacrificing performance.

Broader Implications. From a system design

perspective, the ability to implement secure

communication with such minimal code lowers the barrier

to adopting best practices. Even small development teams

or projects with limited security expertise can add strong

protection to their applications. In distributed

environments where services frequently exchange

sensitive tokens, credentials, or user data, this level of

accessibility is crucial for preventing data breaches.

In summary, AES-GCM represents the cornerstone of

secure data transmission in Python applications. Its

combination of confidentiality, integrity, and efficiency

makes it suitable not only for high-performance

microservices but also for IoT devices and mobile

systems. The Python ecosystem provides a mature, stable

interface to this cryptographic primitive, allowing

developers to implement strong, production-grade

security in an accessible and reproducible manner.

2. Choosing a Cryptographic Architecture for

Python Applications

While symmetric encryption is extremely efficient and

well-suited for protecting large amounts of data, it does

not on its own address the fundamental challenge of

securely distributing encryption keys between

communicating parties. If both ends of a communication

channel do not already share a common secret, symmetric

algorithms alone cannot establish trust or guarantee

confidentiality at the moment of initial contact. This

limitation makes it necessary to introduce additional

mechanisms that can provide secure key exchange and

authentication before encrypted communication can

begin.

Hybrid cryptographic architectures were developed

precisely to overcome this gap. By combining the

efficiency of symmetric encryption with the robustness of

asymmetric cryptography, they enable systems to

establish secure communication channels even over

untrusted networks. In practice, the hybrid model begins

with an asymmetric key exchange mechanism that allows

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

41

two parties to agree on a shared secret without directly

transmitting it. Once the secret is established, it is

transformed into a session key through a key derivation

function, and from that moment on, all data transmission

can rely on fast symmetric encryption algorithms.

In the context of Python applications, the proposed

architecture relies on a set of modern primitives that have

become industry standards. For key exchange, the use of

ephemeral X25519 provides an implementation of the

Diffie-Hellman protocol that is both efficient and secure,

while also enabling forward secrecy. This means that

session keys are generated fresh for each session and are

never reused, ensuring that even if a long-term private key

is compromised in the future, previously exchanged data

remains secure. Once the shared secret has been generated,

it is processed through the HKDF construction with SHA-

256, which guarantees that the derived keys have strong

cryptographic properties and cannot be predicted from the

original secret.

To protect the initial handshake against impersonation

and man-in-the-middle attacks, digital signatures are

integrated into the scheme. Ed25519 is employed for this

purpose, offering high security with excellent

performance. Each side can sign its handshake messages

and verify those of its peer, ensuring that only legitimate

parties can participate in the exchange. Furthermore, the

architecture incorporates additional authenticated data,

which includes information such as protocol version,

session identifiers, and sequence numbers. This extra layer

of authenticated metadata prevents protocol downgrades

and replay attacks, giving the system resilience against

common real-world threats.

The strength of this architecture lies in its balance

between efficiency and security. Symmetric encryption

ensures that the actual transmission of data is fast and

reliable, while the asymmetric components and integrity

checks guarantee that only the right parties can

communicate and that every session is cryptographically

unique. For Python developers, the availability of mature

libraries such as cryptography and PyNaCl means that

implementing this design does not require deep

cryptographic expertise. Instead, developers can focus on

the correct combination of primitives, confident that the

underlying implementations are secure and optimized.

Ultimately, the adoption of a hybrid cryptographic

architecture in Python applications ensures authenticity,

forward secrecy, and robustness against replay or

downgrade attacks. It transforms communication between

distributed components into a secure and verifiable

process that is both practical and resilient to adversarial

conditions.

3. Modeling the Secure Communication Process

The secure channel establishment follows these

steps:

1. Both parties possess long-term Ed25519 keys.

Public keys are exchanged out-of-band beforehand.

2. At the start of a session, each side generates an

ephemeral X25519 key pair.

3. Party A sends to Party B: eph_pub_A,

session_id, proto_version, and a digital signature of these

values.

4. Party B verifies the signature, then responds

with its own eph_pub_B and signature.

5. Both sides compute the shared secret via

X25519 and derive a session AES-GCM key using

HKDF.

6. All subsequent messages are encrypted using

AES-GCM with metadata included in AAD.

Fig. 2. The result of modeling the secure communication

process

This handshake ensures mutual authentication and

forward secrecy.

After the initial handshake phase is completed, the

secure communication process transitions into the data

exchange stage, where all subsequent messages are

protected with the derived AES-GCM session key. At

this point, the system has achieved two critical

guarantees: first, that both participants are indeed who

they claim to be, and second, that the confidentiality of

past and future sessions is preserved even in the event of

long-term key compromise. This combination of mutual

authentication and forward secrecy elevates the protocol

beyond basic transport security, creating a robust

foundation for application-level protection.

An important aspect of the model is the handling of

metadata. Each encrypted message includes associated

data that is bound to the ciphertext through the AEAD

mechanism. This metadata typically contains the

protocol version, session identifier, and a monotonically

increasing sequence number. Binding these fields to the

cryptographic operation ensures that they cannot be

altered or replayed by an attacker. For example, if an

adversary were to intercept and resend an earlier packet,

the receiving application would immediately detect the

duplication because the sequence number would not

align with the expected order. In this way, replay attacks

are neutralized by the inherent design of the system.

Equally critical is the resilience of the protocol to

downgrade attacks. By explicitly authenticating the

protocol version in every message, the system prevents

adversaries from coercing participants into using weaker

cryptographic algorithms. If a malicious intermediary

attempted to strip version information or replace it with

an outdated identifier, the authentication tag produced by

AES-GCM would fail verification, immediately

exposing the manipulation attempt. This provides strong

assurance that the integrity of the negotiation phase is

preserved throughout the lifetime of the communication

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

42

session.

The practical modeling of this process also takes

into account operational requirements such as key

rotation and session expiration. Since ephemeral keys are

generated for every session, the natural outcome is a

system that periodically refreshes its security state.

However, for long-running services, it is advisable to

implement explicit rotation policies, for instance, by

renegotiating the handshake after a fixed time interval or

a specified number of messages. This strategy minimizes

the impact of potential key leakage and ensures that any

compromised session secrets have only a limited window

of usefulness to an attacker.

Another valuable property of the model is its

transport independence. Because the handshake and

encryption mechanisms operate at the application layer,

they can be applied consistently across a wide variety of

channels. Whether messages are transmitted over HTTP,

gRPC, MQTT, or even custom file-based pipelines, the

cryptographic guarantees remain identical. This

universality simplifies the architecture of distributed

systems by decoupling security from the underlying

transport, making the approach adaptable to

heterogeneous infrastructures.

Finally, the strength of the modeled process lies in

its clarity and reproducibility. The steps are transparent,

the cryptographic primitives are well-studied, and the

implementation can be achieved with only a few lines of

Python code using trusted libraries. This lowers the

barrier to adoption, enabling even non-specialist

developers to construct systems with robust end-to-end

security. By capturing the handshake, key exchange,

session derivation, and message authentication in a single

coherent model, the protocol offers both theoretical

soundness and practical applicability for real-world

distributed environments [3].

4. Measuring the Average Time for Secure

Message Transmission

Performance evaluation of cryptographic

mechanisms is a crucial step in building secure systems.

Even if algorithms provide a high level of theoretical

security, excessive computational overhead can lead to

delays that make the system unsuitable for real-time

usage. Therefore, it is necessary to analyze the average

execution time of encryption, decryption, key exchange,

and signature operations under typical conditions.

The main goal of the measurements was to evaluate:

1. The speed of symmetric encryption (AES-

GCM) for messages of different sizes.

2. The cost of asymmetric key exchange

(X25519).

3. The performance of signature generation and

verification (Ed25519).

4. The overall impact of these operations on

message exchange between Python applications.

The experiment was conducted on a mid-range

laptop with an Intel i5 processor, running Python 3.11.

To reduce measurement error, hundreds of iterations

were executed for each operation, and the arithmetic

mean was calculated.

Results:

1. AES-GCM: less than 1 ms per 4 KB message.

2. X25519: approximately 3–5 ms to establish a

shared secret.

3. Ed25519: signature or verification takes about 0.3

ms.

For comparison, ChaCha20-Poly1305, which is often

preferred in mobile and embedded systems, produced

similar results, but demonstrated more consistent

performance on low-power devices.

Fig. 3. The result of measuring the average time for secure

message transmission

The performance evaluation confirmed that modern

cryptographic primitives used in Python applications are

highly efficient and suitable for real-world systems. The

measurements showed that AES-GCM encryption and

decryption of a 4 KB message consistently required less

than a millisecond. This result highlights the efficiency of

symmetric encryption: its computational overhead is

practically negligible compared to the network latency

usually encountered in distributed applications. In other

words, the time spent on encrypting or decrypting data is

overshadowed by the delays introduced by transport

protocols or physical network conditions, making AES-

GCM an excellent default choice for high-throughput

environments.

The asymmetric key exchange mechanism, based on

X25519, demonstrated an average cost of approximately

three to five milliseconds for establishing a shared secret.

Although this operation is slower than symmetric

encryption, its impact is limited because it occurs only

once per session, during the initial handshake or at planned

rekeying intervals. In long-lived sessions, the relative cost

of X25519 quickly diminishes, since the initial few

milliseconds are amortized across potentially thousands of

subsequent encrypted messages. This characteristic

confirms that ephemeral key exchanges can be integrated

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

43

into real-time communication systems without creating a

performance bottleneck.

Digital signature operations with Ed25519 proved to

be even more efficient, with both signing and verification

completing in roughly 0.3 milliseconds. This level of

performance makes it realistic to embed signatures into

the handshake process or even apply them selectively to

critical metadata without significantly affecting

throughput. Signatures add authenticity guarantees that

symmetric encryption alone cannot provide, ensuring that

even if a communication channel is compromised,

messages cannot be forged without detection.

When compared to ChaCha20-Poly1305, a cipher

often deployed in mobile and embedded environments,

AES-GCM showed nearly identical results on general-

purpose hardware. However, the analysis revealed that

ChaCha20-Poly1305 performs more consistently on low-

power devices that lack AES hardware acceleration. This

finding suggests that the choice between AES-GCM and

ChaCha20-Poly1305 should be guided by the target

platform. Systems running on modern processors with

built-in AES instructions will benefit most from AES-

GCM, while IoT devices and battery-powered hardware

may gain advantages from ChaCha20-Poly1305’s

predictable performance profile.

Overall, the experimental results demonstrate that

the main source of latency in secure communication does

not stem from message encryption itself but from the

establishment of new sessions. Once the handshake has

been completed, the efficiency of symmetric encryption

ensures that secure communication can proceed with

minimal delay. These insights confirm that hybrid

cryptographic schemes combining X25519, Ed25519, and

AES-GCM (or ChaCha20-Poly1305) provide strong

security without imposing unacceptable computational

costs.

These findings also carry direct implications for

system design. In microservices and distributed systems,

where large numbers of requests are processed per second,

AES-GCM can be deployed with confidence, knowing

that it will not become a performance bottleneck. In IoT

scenarios, ChaCha20-Poly1305 may be preferable, as it

delivers more predictable behavior on resource-

constrained CPUs. Finally, the introduction of structured

key rotation strategies allows developers to balance strong

security with sustained performance, ensuring that

communication channels remain protected without

introducing excessive overhead [6].

5. Practical Optimization of Cryptographic

Parameters

Optimizing cryptographic parameters is about

finding the right balance between performance and

security.

Best practices include:

1. Key rotation – regenerate session keys after a

fixed number of messages or time interval.

2. Sequence numbers – each message must have a

strictly increasing counter to prevent replays.

3. Two active keys during rotation – so delayed

messages are not lost.

4. Protocol versioning in AAD – prevents

downgrade attacks.

The challenge of applying cryptography in

distributed applications is not limited to choosing secure

primitives; it also involves tuning parameters and

operational rules to ensure that the system remains both

secure and efficient. Practical optimization therefore

requires careful planning of key rotation, sequence

tracking, version control, and error tolerance during key

transitions.

Оne of the fundamental practices is the periodic

rotation of session keys. Even though AES-GCM

provides robust protection, reusing the same session key

for an indefinite period introduces risks. To mitigate

these risks, session keys should be regenerated either

after a predefined number of encrypted messages or after

a specific time interval. This practice reduces the amount

of data encrypted with a single key, limiting the potential

damage if a session secret were ever exposed.

Fig. 4. The result of practical optimization of cryptographic

parameters

A second optimization involves strict enforcement

of sequence numbers. Each message should carry a

monotonically increasing counter, which the receiving

side verifies against its expected state. This mechanism

not only ensures that messages are processed in the

correct order but also blocks replay attempts, where an

adversary resends valid packets in an effort to confuse or

disrupt the system. Sequence enforcement thus

strengthens both security and reliability of the

communication process.

To prevent message loss during rekeying, the model

supports the temporary coexistence of two active keys:

the new session key and the immediately preceding one.

This overlap guarantees that any delayed or out-of-order

messages encrypted under the previous key can still be

decrypted correctly. Once the transition period has

passed, the old key is retired, maintaining a balance

between continuity of service and strong security

guarantees.

Finally, protocol versioning embedded within the

additional authenticated data (AAD) ensures that

downgrade attacks are not possible. By cryptographically

binding version information into every encrypted

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

44

message, the system guarantees that both sides are

operating under the same cryptographic assumptions.

Any attempt by an attacker to substitute an older, weaker

protocol version would immediately cause verification

failures, protecting the integrity of the system.

Together, these optimizations illustrate that secure

communication is not solely a matter of algorithm

selection but also of protocol design and operational

discipline. By integrating key rotation policies, sequence

validation, dual-key rekeying, and strict versioning,

developers can construct communication systems that are

not only cryptographically strong but also resilient in the

face of practical deployment challenges.

Such a design not only protects against replays but

also enforces protocol discipline.

6. Discussion of Results

The proposed cryptographic scheme demonstrates

several important advantages that make it highly

practical for modern distributed applications. One of the

most notable strengths lies in its efficiency. The use of

AES-GCM for symmetric encryption ensures that

messages can be encrypted and decrypted in a fraction of

a millisecond, even for payloads of several kilobytes.

This level of performance is critical in environments

where large volumes of data must be exchanged

continuously, such as microservice-based architectures,

IoT ecosystems, or real-time monitoring systems. The

efficiency of AES-GCM also means that the security

layer introduces no noticeable latency, making it

compatible with interactive applications that demand

quick response times.

Another significant aspect is the guarantee of

forward secrecy achieved through ephemeral X25519

key pairs. By generating new session keys for each

communication session, the system ensures that even if a

long-term private key were compromised, past

communications would remain secure. This property is

particularly relevant in adversarial environments where

persistent attackers may collect encrypted traffic for later

decryption attempts. With forward secrecy in place, such

efforts become useless, which significantly strengthens

the resilience of the system.

Ease of integration is also worth emphasizing.

Python provides accessible, well-documented libraries

that allow developers to implement cryptographic

mechanisms with only a few lines of code. This lowers

the barrier for teams that may not have deep expertise in

cryptography, enabling them to adopt strong security

practices without the risk of introducing serious

implementation errors. Additionally, because the

proposed scheme is transport-agnostic, it is not tied to a

specific communication channel. It can be applied

equally well over HTTP, gRPC, MQTT, message queues,

or even file-based communication. This flexibility means

that the same cryptographic design can be reused across

different layers of the system, simplifying security

management.

Despite these advantages, certain limitations must

be acknowledged. The approach still requires an initial

trusted channel for the exchange of long-term public

keys. Without such a mechanism, the system remains

vulnerable to impersonation during the first contact.

Moreover, strict adherence to key rotation policies is

essential. While the cryptographic primitives themselves

are secure, failure to rotate keys properly or to maintain

counters for replay protection could create exploitable

weaknesses. Finally, in a real production environment, it

remains advisable to use TLS as a baseline transport-

level protection. TLS provides compatibility with

infrastructure components such as load balancers and

reverse proxies, while the proposed lightweight scheme

can serve as an additional end-to-end layer when

application-level metadata protection is required.

The comparison with existing approaches

highlights the conditions under which this solution is

most appropriate. If a system only requires basic

confidentiality during data transfer, a standard TLS

channel is often sufficient and easier to maintain.

However, in cases where end-to-end integrity and control

over metadata are critical, or where replay protection

must be enforced independently of the transport, the

described cryptographic overlay becomes a more suitable

option. It allows developers to embed security guarantees

directly at the application layer, extending protection

beyond the limits of transport-level encryption.

Beyond these observations, it is important to

emphasize that the practical value of the proposed scheme

lies not only in the efficiency of the chosen algorithms but

also in their composability. The combination of AES-

GCM, X25519, and Ed25519 produces a layered defense

model in which different cryptographic primitives

reinforce each other. AES-GCM ensures the

confidentiality and integrity of the actual data payload,

while X25519 guarantees that each session starts with a

fresh and unique secret, and Ed25519 provides a verifiable

identity to prevent impersonation. This interdependence

creates a resilient structure that is far stronger than any

single primitive used in isolation.

From an operational perspective, the scheme also

facilitates a modular approach to system design. Since it

operates entirely at the application layer, it can be

embedded directly into message serialization frameworks,

middleware, or RPC protocols without requiring changes

at the network layer. This is particularly valuable in

heterogeneous environments where multiple transports

may coexist. Developers can secure HTTP APIs, gRPC

calls, message queues, or even peer-to-peer file exchanges

using the same cryptographic overlay, ensuring uniform

protection across the entire system.

Another key implication is the ease of verification

and audit. Because the protocol defines explicit roles for

each cryptographic primitive and enforces structured

metadata within the AAD field, it becomes

straightforward to log and monitor cryptographic events.

Security teams can track handshake initiations, key

rotations, and signature verifications as auditable events.

This not only supports compliance with data protection

regulations but also simplifies incident response by

providing cryptographically verifiable evidence of

communication flows.

It is also worth noting that the scheme aligns with

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

45

emerging trends in security architecture, such as zero-trust

networking and end-to-end encryption in distributed

microservices. In a zero-trust model, no network path is

assumed to be secure by default. Embedding cryptography

at the application layer ensures that even if the transport

layer is intercepted, or if an attacker gains partial access to

the infrastructure, the confidentiality and integrity of the

data remain intact. Similarly, in microservices, where

messages often traverse multiple intermediaries, end-to-

end protection ensures that only the originating and

receiving services have access to plaintext data, reducing

the attack surface.

Finally, while TLS will likely remain the backbone

of secure transport for the foreseeable future, this work

demonstrates that adding a lightweight cryptographic

overlay at the application layer provides unique

advantages. It strengthens replay resistance, enables

metadata integrity, and decouples security from specific

transport implementations. The combination of these

factors makes the scheme not just a theoretical exercise

but a pragmatic solution ready to be deployed in

production-grade distributed applications [7].

7. Conclusions

This paper has presented a practical and

reproducible model for securing data exchange between

Python applications using a hybrid cryptographic

approach. The central contribution of the work is the

demonstration that strong security guarantees can be

achieved with minimal complexity by carefully

combining symmetric and asymmetric techniques in a

layered manner. By leveraging X25519 for ephemeral

key exchange together with HKDF for secure session key

derivation, the system establishes fresh and unpredictable

session keys for each communication. Once the

handshake is complete, AES-GCM provides efficient,

authenticated encryption of the message stream, ensuring

both confidentiality and integrity. Digital signatures with

Ed25519 protect the handshake itself, establishing the

authenticity of the participants and preventing

impersonation or man-in-the-middle interference.

Additional authenticated data (AAD), which binds

protocol versions, session identifiers, and sequence

numbers into every encrypted message, ensures that

metadata is tamper-proof and that replay or downgrade

attacks cannot succeed.

The experimental evaluation confirmed that these

security properties are achieved with only minimal

performance cost. Encryption and decryption of medium-

sized messages consistently required less than a

millisecond, while asymmetric operations such as

X25519 key exchange and Ed25519 signing or

verification added only a few milliseconds to the initial

session setup. Such results make the scheme feasible not

only for server-grade systems but also for latency-

sensitive applications such as real-time monitoring tools,

microservice architectures, or IoT environments.

Importantly, the measurements demonstrate that the

computational burden of cryptography is no longer a

limiting factor. Instead, the bottlenecks in distributed

systems continue to lie in network latency and

application logic, which means that the adoption of

robust end-to-end security need not come at the expense

of usability or responsiveness.

Beyond raw performance, the work highlights the

accessibility of advanced cryptography in modern

programming environments. Python, with its mature

libraries like cryptography and PyNaCl, allows

developers to implement secure communication channels

with only a handful of lines of code. This democratization

of cryptographic tools is significant because it lowers the

barrier for organizations to adopt best practices. Even

teams without dedicated cryptography experts can embed

protection directly into their applications, reducing the

risk of costly vulnerabilities caused by ad hoc or

improvised security mechanisms [1,2].

The broader implication is that security should not be

viewed exclusively as a responsibility of the network

transport layer. While TLS remains indispensable as a

general-purpose mechanism for securing communication

over the internet, this study shows that embedding

cryptographic guarantees at the application layer provides

important complementary benefits. By operating directly

on application-level messages, the scheme ensures that

security persists even when data passes through

intermediate brokers, message queues, or file-based

exchanges. This end-to-end protection model aligns with

modern trends such as zero-trust networking and

microservice-based architectures, where the assumption

of a trusted network perimeter is no longer realistic.

Looking toward the future, the presented model

provides a foundation upon which further advancements

can be built. One promising direction is the integration of

post-quantum cryptographic algorithms, such as Kyber for

key exchange and Dilithium for digital signatures, which

would future-proof the scheme against the emerging

threats of quantum computing. Another direction involves

coupling the protocol with centralized key management

systems (KMS). By doing so, key rotation and auditing

could be automated, ensuring compliance with strict

regulatory frameworks such as GDPR or HIPAA while

reducing the administrative burden on developers. Finally,

enriching the model with built-in monitoring, logging, and

anomaly detection mechanisms would enhance

operational visibility, making it easier to detect unusual

patterns of communication that could indicate an

attempted attack.

In summary, this work demonstrates that secure

communication between Python applications can be

achieved with a lightweight yet powerful cryptographic

scheme. It proves that the combination of modern

primitives, minimal implementation complexity, and

efficient performance characteristics makes it possible to

integrate end-to-end protection into distributed systems

without disrupting their operation. The proposed model

not only addresses today’s challenges of confidentiality,

authenticity, and integrity but also offers a path toward

adaptation in the face of tomorrow’s evolving

cybersecurity landscape.

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

46

REFERENCES

1. PyCA Cryptography Documentation, https://cryptography.io

2. PyNaCl Documentation, https://pynacl.readthedocs.io

3. NIST SP 800-57. Recommendation for Key Management, 2020, https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final

4. RFC 5116. An Interface and Algorithms for Authenticated Encryption, 2008,

https://datatracker.ietf.org/doc/html/rfc5116

5. RFC 8439. ChaCha20 and Poly1305 for IETF Protocols, 2020, https://datatracker.ietf.org/doc/rfc8439/

6. Aumasson, J.-P. Serious Cryptography. No Starch Press, 2017, 367 р.

7. Schneier, B., Ferguson, N., Kohno, T. Cryptography Engineering. Wiley, 2010, doi: 10.1002/9781118722367

Received (Надійшла) 29.08.2025

Accepted for publication (Прийнята до друку) 05.09.2025

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS

Ковальов Павло Анатолійович – магістр в галузі права, спеціальність «Правознавство», випускник Національного

юридичного університету імені Ярослава Мудрого, Харків, Україна;

Pavlo Kovalov – Master of Law, specializing in Law, graduate of Yaroslav Mudryi National Law University, Kharkiv,

Ukraine;

е-mail: pasha0kovalev@gmail.com; ORCID Author ID: https://orcid.org/0009-0002-6952-8236.

 ЗАХИСТ КАНАЛІВ ОБМІНУ ДАНИМИ МІЖ PYTHON-ЗАСТОСУНКАМИ ЗА ДОПОМОГОЮ

КРИПТОГРАФІЧНИХ БІБЛІОТЕК
П. А. Ковальов

Анотація. Актуальність. Зростаюча залежність від розподілених застосунків актуалізує потребу у створенні

захищених каналів обміну даними між програмними компонентами. Без належного захисту комунікація стає вразливою

до атак, таких як перехоплення, підміна, модифікація та повторна відправка повідомлень. Предметом дослідження у

статті є використання криптографічних бібліотек Python (cryptography, PyNaCl) для побудови легких, але надійних

механізмів безпеки поверх наявних каналів обміну. Метою статті є представлення практичного та відтворюваного методу

захисту інформаційних потоків шляхом поєднання симетричного шифрування (AES-GCM), ефемерного обміну ключами

(X25519), виведення ключів (HKDF із SHA-256) та цифрових підписів (Ed25519). Були отримані наступні результати.

Запропонована модель інтегрує аутентифіковане шифрування з додатковими даними (AEAD) та лічильниками

повідомлень для запобігання повторним атакам, залишаючись сумісною з різними транспортними рівнями (HTTP, gRPC,

MQTT). У роботі наведено мінімальні приклади коду та результати вимірювань продуктивності, які показують, що

шифрування та розшифрування займають менше однієї мілісекунди для типових повідомлень, а обмін ключами та

операції підпису додають лише кілька мілісекунд. Це свідчить про можливість реалізації потужного криптографічного

захисту без значних накладних витрат. Висновок. Отримані результати підтверджують, придатність схеми для

розподілених систем у режимі реального часу, мікросервісів та IoT. Подальший розвиток може включати інтеграцію

постквантових алгоритмів та автоматизоване управління ключами.

Ключові слова: Python-застосунки; захищена комунікація; AES-GCM; X25519; Ed25519; HKDF; захист від replay-

атак.

https://cryptography.io/
https://pynacl.readthedocs.io/
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/rfc8439/
http://dx.doi.org/10.1002/9781118722367
mailto:pasha0kovalev@gmail.com
https://orcid.org/0009-0002-6952-8236

