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Abstract. Topicality. The increasing reliance on distributed applications highlights the urgent need for secure data exchange 

channels between software components. Without appropriate protection, communication is exposed to threats such as eavesdropping, 

spoofing, tampering, and replay attacks. The subject of study in the article is the use of Python’s cryptographic libraries (cryptography, 

PyNaCl) for constructing lightweight yet robust security layers on top of existing communication mechanisms. The purpose of the 

article is to present a practical and reproducible method for securing message flows by combining symmetric encryption (AES-GCM), 

ephemeral key exchange (X25519), key derivation (HKDF with SHA-256), and digital signatures (Ed25519). The following results 

were obtained. The proposed model integrates authenticated encryption with associated data (AEAD) and session counters to mitigate 

replay risks, while maintaining compatibility with various transports such as HTTP, gRPC, and MQTT. The study provides minimal, 

clear code examples and performance measurements showing that the system achieves encryption and decryption in less than one 

millisecond for typical payloads, with key exchange and signature operations adding only a few milliseconds. These results demonstrate 

that strong cryptographic protection can be achieved without significant performance penalties. Conclusion. The findings confirm the 

suitability of the proposed scheme for real-time distributed systems, microservices, and IoT environments. Future improvements may 

include post-quantum cryptography integration and automated key management. 

Keywords: Python applications; secure communication; AES-GCM; X25519; Ed25519; HKDF; replay protection. 

 

Introduction 

Problem Relevance. Distributed applications form 

the foundation of today’s information systems. They 

constantly exchange data through network protocols, 

APIs, or message queues. These data exchanges may 

include service events, user identifiers, access tokens, 

financial transactions, or files with confidential 

information. 

If such data are transmitted without protection, they 

become vulnerable to a range of attacks, including: 

● Eavesdropping – an attacker intercepts and reads 

the data in transit. 

● Spoofing – impersonation of a sender or receiver. 

● Tampering – unauthorized modification of 

messages. 

● Replay attacks – resending previously captured 

messages to deceive the system. 

Python is one of the most widely used programming 

languages globally. It powers web servers, microservices, 

automation systems, and IoT solutions. All of these 

systems rely heavily on secure data exchange, making this 

problem highly relevant for both researchers and 

practitioners. 

Fortunately, Python provides mature libraries for 

cryptography, such as cryptography, PyNaCl, and the 

standard hashlib. They allow developers to design hybrid 

protection schemes that combine: 

● symmetric encryption (e.g., AES-GCM, 

ChaCha20-Poly1305) for fast traffic protection; 

● asymmetric key exchange (e.g., X25519, RSA) for 

secure key distribution; 

● digital signatures (e.g., Ed25519, RSA-PSS) for 

authentication; 

● hashing for integrity verification. 

Literature Review. Research and standards 

emphasize that no single cryptographic primitive can ensure 

full security. Instead, robust systems combine multiple 

primitives. 

 

The best practices are: 

● AES-GCM or ChaCha20-Poly1305 – 

authenticated encryption with associated data (AEAD) 

for data confidentiality and authenticity. 

● X25519 or RSA-OAEP – secure key exchange. 

● Ed25519 or RSA-PSS – digital signatures to 

verify authenticity. 

● HKDF (SHA-256) – for key derivation. 

● Key lifecycle management – including rotation, 

secure storage, and audit policies. 

In Python, these cryptographic patterns are directly 

available through open-source libraries such as 

cryptography and PyNaCl. 

Purpose and Research Objectives. Purpose: to 

demonstrate a practical method for building a secure 

communication channel between Python components 

without complex mathematical formulas, using minimal, 

simple code examples. 

Objectives: 

1. Select modern cryptographic primitives that 

comply with security standards. 

2. Demonstrate a simple key exchange 

mechanism. 

Implement message encryption and decryption. 

3. Add digital signatures and verification for 

service data. 

4. Introduce counters and protocol versions to 

mitigate replay attacks. 

5. Evaluate performance and propose practical 

recommendations for key rotations [1, 2]. 

1. Implementing Secure Data Transmission 

Between Python Applications 

Symmetric encryption is the foundation of secure 

communication. It uses the same key for encryption and 

decryption and is known for its speed and efficiency, 

making it suitable for real-time systems. 
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AES in Galois/Counter Mode (AES-GCM) is widely 

regarded as the most practical choice, because it provides 

both confidentiality and integrity. 

 

 
 

Fig. 1. Secure data transfer between Python programs using 

symmetric encryption 

 

Key rules: 

● Never reuse the same nonce with the same key. 

● Place metadata (e.g., protocol version, session 

ID, message sequence number) in AAD for integrity 

protection. 

● Handle keys securely: they should not be 

hardcoded or logged. 

This simple example shows how developers can 

encrypt and authenticate messages in just a few lines of 

code. 

The significance of this implementation lies in its 

simplicity: a complete cycle of encryption and decryption 

can be expressed in fewer than ten lines of Python code, 

yet the underlying cryptographic protection is on par with 

industry standards used in TLS and VPNs. This makes 

AES-GCM particularly attractive for developers who need 

to integrate security into their systems without building a 

complex infrastructure from scratch. 

AES-GCM works by combining counter mode 

encryption with the Galois Message Authentication Code 

(GMAC). Counter mode provides confidentiality by 

transforming AES into a stream cipher, while GMAC 

ensures message integrity by producing an authentication 

tag. The result is an Authenticated Encryption with 

Associated Data (AEAD) scheme, which simultaneously 

solves two critical problems: keeping the data secret and 

guaranteeing that it has not been tampered with. Unlike 

traditional approaches that used AES in CBC mode 

combined with a separate HMAC, AES-GCM integrates 

both tasks into a single efficient operation [4,5]. 

Another powerful concept in this scheme is the 

inclusion of Additional Authenticated Data (AAD). AAD 

allows applications to bind non-secret information—such 

as protocol versions, session identifiers, or sequence 

numbers—directly into the authentication process. 

Although this metadata is not encrypted, it becomes 

cryptographically tied to the message. If an attacker 

attempts to alter or remove this information, the 

decryption will fail. This ensures not only confidentiality 

but also structural integrity of the communication protocol 

itself. 

Practical Considerations. In practice, the choice of 

nonce generation and key management is just as important 

as the encryption algorithm. Developers must ensure that 

every nonce used with a given key is unique; otherwise, 

the security guarantees of AES-GCM collapse. A common 

strategy is to derive nonces from sequence numbers or 

counters, guaranteeing uniqueness even under high loads. 

Key management should be automated wherever 

possible—manual handling or hardcoding keys into 

source code is one of the most common security mistakes 

in real-world deployments. 

Furthermore, AES-GCM benefits significantly from 

hardware acceleration. Many modern processors include 

dedicated AES instructions, which allow encryption and 

decryption to be executed at near memory-copy speeds. 

This means that the cryptographic overhead for protecting 

each message is often negligible compared to the cost of 

transmitting the data over a network. In distributed 

systems with thousands of transactions per second, this 

property ensures that strong encryption can be deployed 

universally without sacrificing performance. 

Broader Implications. From a system design 

perspective, the ability to implement secure 

communication with such minimal code lowers the barrier 

to adopting best practices. Even small development teams 

or projects with limited security expertise can add strong 

protection to their applications. In distributed 

environments where services frequently exchange 

sensitive tokens, credentials, or user data, this level of 

accessibility is crucial for preventing data breaches. 

In summary, AES-GCM represents the cornerstone of 

secure data transmission in Python applications. Its 

combination of confidentiality, integrity, and efficiency 

makes it suitable not only for high-performance 

microservices but also for IoT devices and mobile 

systems. The Python ecosystem provides a mature, stable 

interface to this cryptographic primitive, allowing 

developers to implement strong, production-grade 

security in an accessible and reproducible manner. 

2. Choosing a Cryptographic Architecture for 

Python Applications 

While symmetric encryption is extremely efficient and 

well-suited for protecting large amounts of data, it does 

not on its own address the fundamental challenge of 

securely distributing encryption keys between 

communicating parties. If both ends of a communication 

channel do not already share a common secret, symmetric 

algorithms alone cannot establish trust or guarantee 

confidentiality at the moment of initial contact. This 

limitation makes it necessary to introduce additional 

mechanisms that can provide secure key exchange and 

authentication before encrypted communication can 

begin. 

Hybrid cryptographic architectures were developed 

precisely to overcome this gap. By combining the 

efficiency of symmetric encryption with the robustness of 

asymmetric cryptography, they enable systems to 

establish secure communication channels even over 

untrusted networks. In practice, the hybrid model begins 

with an asymmetric key exchange mechanism that allows 
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two parties to agree on a shared secret without directly 

transmitting it. Once the secret is established, it is 

transformed into a session key through a key derivation 

function, and from that moment on, all data transmission 

can rely on fast symmetric encryption algorithms. 

In the context of Python applications, the proposed 

architecture relies on a set of modern primitives that have 

become industry standards. For key exchange, the use of 

ephemeral X25519 provides an implementation of the 

Diffie-Hellman protocol that is both efficient and secure, 

while also enabling forward secrecy. This means that 

session keys are generated fresh for each session and are 

never reused, ensuring that even if a long-term private key 

is compromised in the future, previously exchanged data 

remains secure. Once the shared secret has been generated, 

it is processed through the HKDF construction with SHA-

256, which guarantees that the derived keys have strong 

cryptographic properties and cannot be predicted from the 

original secret. 

To protect the initial handshake against impersonation 

and man-in-the-middle attacks, digital signatures are 

integrated into the scheme. Ed25519 is employed for this 

purpose, offering high security with excellent 

performance. Each side can sign its handshake messages 

and verify those of its peer, ensuring that only legitimate 

parties can participate in the exchange. Furthermore, the 

architecture incorporates additional authenticated data, 

which includes information such as protocol version, 

session identifiers, and sequence numbers. This extra layer 

of authenticated metadata prevents protocol downgrades 

and replay attacks, giving the system resilience against 

common real-world threats. 

The strength of this architecture lies in its balance 

between efficiency and security. Symmetric encryption 

ensures that the actual transmission of data is fast and 

reliable, while the asymmetric components and integrity 

checks guarantee that only the right parties can 

communicate and that every session is cryptographically 

unique. For Python developers, the availability of mature 

libraries such as cryptography and PyNaCl means that 

implementing this design does not require deep 

cryptographic expertise. Instead, developers can focus on 

the correct combination of primitives, confident that the 

underlying implementations are secure and optimized. 

Ultimately, the adoption of a hybrid cryptographic 

architecture in Python applications ensures authenticity, 

forward secrecy, and robustness against replay or 

downgrade attacks. It transforms communication between 

distributed components into a secure and verifiable 

process that is both practical and resilient to adversarial 

conditions. 

3. Modeling the Secure Communication Process 

The secure channel establishment follows these 

steps: 

1. Both parties possess long-term Ed25519 keys. 

Public keys are exchanged out-of-band beforehand. 

2. At the start of a session, each side generates an 

ephemeral X25519 key pair. 

3. Party A sends to Party B: eph_pub_A, 

session_id, proto_version, and a digital signature of these 

values. 

4. Party B verifies the signature, then responds 

with its own eph_pub_B and signature. 

5. Both sides compute the shared secret via 

X25519 and derive a session AES-GCM key using 

HKDF. 

6. All subsequent messages are encrypted using 

AES-GCM with metadata included in AAD. 

 
 

Fig. 2. The result of modeling the secure communication 

process 

 

This handshake ensures mutual authentication and 

forward secrecy. 

After the initial handshake phase is completed, the 

secure communication process transitions into the data 

exchange stage, where all subsequent messages are 

protected with the derived AES-GCM session key. At 

this point, the system has achieved two critical 

guarantees: first, that both participants are indeed who 

they claim to be, and second, that the confidentiality of 

past and future sessions is preserved even in the event of 

long-term key compromise. This combination of mutual 

authentication and forward secrecy elevates the protocol 

beyond basic transport security, creating a robust 

foundation for application-level protection. 

An important aspect of the model is the handling of 

metadata. Each encrypted message includes associated 

data that is bound to the ciphertext through the AEAD 

mechanism. This metadata typically contains the 

protocol version, session identifier, and a monotonically 

increasing sequence number. Binding these fields to the 

cryptographic operation ensures that they cannot be 

altered or replayed by an attacker. For example, if an 

adversary were to intercept and resend an earlier packet, 

the receiving application would immediately detect the 

duplication because the sequence number would not 

align with the expected order. In this way, replay attacks 

are neutralized by the inherent design of the system. 

Equally critical is the resilience of the protocol to 

downgrade attacks. By explicitly authenticating the 

protocol version in every message, the system prevents 

adversaries from coercing participants into using weaker 

cryptographic algorithms. If a malicious intermediary 

attempted to strip version information or replace it with 

an outdated identifier, the authentication tag produced by 

AES-GCM would fail verification, immediately 

exposing the manipulation attempt. This provides strong 

assurance that the integrity of the negotiation phase is 

preserved throughout the lifetime of the communication 
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session. 

The practical modeling of this process also takes 

into account operational requirements such as key 

rotation and session expiration. Since ephemeral keys are 

generated for every session, the natural outcome is a 

system that periodically refreshes its security state. 

However, for long-running services, it is advisable to 

implement explicit rotation policies, for instance, by 

renegotiating the handshake after a fixed time interval or 

a specified number of messages. This strategy minimizes 

the impact of potential key leakage and ensures that any 

compromised session secrets have only a limited window 

of usefulness to an attacker. 

Another valuable property of the model is its 

transport independence. Because the handshake and 

encryption mechanisms operate at the application layer, 

they can be applied consistently across a wide variety of 

channels. Whether messages are transmitted over HTTP, 

gRPC, MQTT, or even custom file-based pipelines, the 

cryptographic guarantees remain identical. This 

universality simplifies the architecture of distributed 

systems by decoupling security from the underlying 

transport, making the approach adaptable to 

heterogeneous infrastructures. 

Finally, the strength of the modeled process lies in 

its clarity and reproducibility. The steps are transparent, 

the cryptographic primitives are well-studied, and the 

implementation can be achieved with only a few lines of 

Python code using trusted libraries. This lowers the 

barrier to adoption, enabling even non-specialist 

developers to construct systems with robust end-to-end 

security. By capturing the handshake, key exchange, 

session derivation, and message authentication in a single 

coherent model, the protocol offers both theoretical 

soundness and practical applicability for real-world 

distributed environments [3]. 

4. Measuring the Average Time for Secure 

Message Transmission 

Performance evaluation of cryptographic 

mechanisms is a crucial step in building secure systems. 

Even if algorithms provide a high level of theoretical 

security, excessive computational overhead can lead to 

delays that make the system unsuitable for real-time 

usage. Therefore, it is necessary to analyze the average 

execution time of encryption, decryption, key exchange, 

and signature operations under typical conditions. 

The main goal of the measurements was to evaluate: 

1. The speed of symmetric encryption (AES-

GCM) for messages of different sizes. 

2. The cost of asymmetric key exchange 

(X25519). 

3. The performance of signature generation and 

verification (Ed25519). 

4. The overall impact of these operations on 

message exchange between Python applications. 

The experiment was conducted on a mid-range 

laptop with an Intel i5 processor, running Python 3.11. 

To reduce measurement error, hundreds of iterations 

were executed for each operation, and the arithmetic 

mean was calculated. 

Results: 

1. AES-GCM: less than 1 ms per 4 KB message. 

2. X25519: approximately 3–5 ms to establish a 

shared secret. 

3. Ed25519: signature or verification takes about 0.3 

ms. 

For comparison, ChaCha20-Poly1305, which is often 

preferred in mobile and embedded systems, produced 

similar results, but demonstrated more consistent 

performance on low-power devices. 

 

 
 

Fig. 3. The result of measuring the average time for secure 

message transmission 

 

The performance evaluation confirmed that modern 

cryptographic primitives used in Python applications are 

highly efficient and suitable for real-world systems. The 

measurements showed that AES-GCM encryption and 

decryption of a 4 KB message consistently required less 

than a millisecond. This result highlights the efficiency of 

symmetric encryption: its computational overhead is 

practically negligible compared to the network latency 

usually encountered in distributed applications. In other 

words, the time spent on encrypting or decrypting data is 

overshadowed by the delays introduced by transport 

protocols or physical network conditions, making AES-

GCM an excellent default choice for high-throughput 

environments. 

The asymmetric key exchange mechanism, based on 

X25519, demonstrated an average cost of approximately 

three to five milliseconds for establishing a shared secret. 

Although this operation is slower than symmetric 

encryption, its impact is limited because it occurs only 

once per session, during the initial handshake or at planned 

rekeying intervals. In long-lived sessions, the relative cost 

of X25519 quickly diminishes, since the initial few 

milliseconds are amortized across potentially thousands of 

subsequent encrypted messages. This characteristic 

confirms that ephemeral key exchanges can be integrated 
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into real-time communication systems without creating a 

performance bottleneck. 

Digital signature operations with Ed25519 proved to 

be even more efficient, with both signing and verification 

completing in roughly 0.3 milliseconds. This level of 

performance makes it realistic to embed signatures into 

the handshake process or even apply them selectively to 

critical metadata without significantly affecting 

throughput. Signatures add authenticity guarantees that 

symmetric encryption alone cannot provide, ensuring that 

even if a communication channel is compromised, 

messages cannot be forged without detection. 

When compared to ChaCha20-Poly1305, a cipher 

often deployed in mobile and embedded environments, 

AES-GCM showed nearly identical results on general-

purpose hardware. However, the analysis revealed that 

ChaCha20-Poly1305 performs more consistently on low-

power devices that lack AES hardware acceleration. This 

finding suggests that the choice between AES-GCM and 

ChaCha20-Poly1305 should be guided by the target 

platform. Systems running on modern processors with 

built-in AES instructions will benefit most from AES-

GCM, while IoT devices and battery-powered hardware 

may gain advantages from ChaCha20-Poly1305’s 

predictable performance profile. 

Overall, the experimental results demonstrate that 

the main source of latency in secure communication does 

not stem from message encryption itself but from the 

establishment of new sessions. Once the handshake has 

been completed, the efficiency of symmetric encryption 

ensures that secure communication can proceed with 

minimal delay. These insights confirm that hybrid 

cryptographic schemes combining X25519, Ed25519, and 

AES-GCM (or ChaCha20-Poly1305) provide strong 

security without imposing unacceptable computational 

costs. 

These findings also carry direct implications for 

system design. In microservices and distributed systems, 

where large numbers of requests are processed per second, 

AES-GCM can be deployed with confidence, knowing 

that it will not become a performance bottleneck. In IoT 

scenarios, ChaCha20-Poly1305 may be preferable, as it 

delivers more predictable behavior on resource-

constrained CPUs. Finally, the introduction of structured 

key rotation strategies allows developers to balance strong 

security with sustained performance, ensuring that 

communication channels remain protected without 

introducing excessive overhead [6]. 

5. Practical Optimization of Cryptographic 

Parameters 

Optimizing cryptographic parameters is about 

finding the right balance between performance and 

security. 

Best practices include: 

1. Key rotation – regenerate session keys after a 

fixed number of messages or time interval. 

2. Sequence numbers – each message must have a 

strictly increasing counter to prevent replays. 

3. Two active keys during rotation – so delayed 

messages are not lost. 

4. Protocol versioning in AAD – prevents 

downgrade attacks. 

The challenge of applying cryptography in 

distributed applications is not limited to choosing secure 

primitives; it also involves tuning parameters and 

operational rules to ensure that the system remains both 

secure and efficient. Practical optimization therefore 

requires careful planning of key rotation, sequence 

tracking, version control, and error tolerance during key 

transitions. 

Оne of the fundamental practices is the periodic 

rotation of session keys. Even though AES-GCM 

provides robust protection, reusing the same session key 

for an indefinite period introduces risks. To mitigate 

these risks, session keys should be regenerated either 

after a predefined number of encrypted messages or after 

a specific time interval. This practice reduces the amount 

of data encrypted with a single key, limiting the potential 

damage if a session secret were ever exposed. 

 

 
 

Fig. 4. The result of practical optimization of cryptographic 

parameters 

 

A second optimization involves strict enforcement 

of sequence numbers. Each message should carry a 

monotonically increasing counter, which the receiving 

side verifies against its expected state. This mechanism 

not only ensures that messages are processed in the 

correct order but also blocks replay attempts, where an 

adversary resends valid packets in an effort to confuse or 

disrupt the system. Sequence enforcement thus 

strengthens both security and reliability of the 

communication process. 

To prevent message loss during rekeying, the model 

supports the temporary coexistence of two active keys: 

the new session key and the immediately preceding one. 

This overlap guarantees that any delayed or out-of-order 

messages encrypted under the previous key can still be 

decrypted correctly. Once the transition period has 

passed, the old key is retired, maintaining a balance 

between continuity of service and strong security 

guarantees. 

Finally, protocol versioning embedded within the 

additional authenticated data (AAD) ensures that 

downgrade attacks are not possible. By cryptographically 

binding version information into every encrypted 
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message, the system guarantees that both sides are 

operating under the same cryptographic assumptions. 

Any attempt by an attacker to substitute an older, weaker 

protocol version would immediately cause verification 

failures, protecting the integrity of the system. 

Together, these optimizations illustrate that secure 

communication is not solely a matter of algorithm 

selection but also of protocol design and operational 

discipline. By integrating key rotation policies, sequence 

validation, dual-key rekeying, and strict versioning, 

developers can construct communication systems that are 

not only cryptographically strong but also resilient in the 

face of practical deployment challenges. 

Such a design not only protects against replays but 

also enforces protocol discipline. 

6. Discussion of Results 

The proposed cryptographic scheme demonstrates 

several important advantages that make it highly 

practical for modern distributed applications. One of the 

most notable strengths lies in its efficiency. The use of 

AES-GCM for symmetric encryption ensures that 

messages can be encrypted and decrypted in a fraction of 

a millisecond, even for payloads of several kilobytes. 

This level of performance is critical in environments 

where large volumes of data must be exchanged 

continuously, such as microservice-based architectures, 

IoT ecosystems, or real-time monitoring systems. The 

efficiency of AES-GCM also means that the security 

layer introduces no noticeable latency, making it 

compatible with interactive applications that demand 

quick response times. 

Another significant aspect is the guarantee of 

forward secrecy achieved through ephemeral X25519 

key pairs. By generating new session keys for each 

communication session, the system ensures that even if a 

long-term private key were compromised, past 

communications would remain secure. This property is 

particularly relevant in adversarial environments where 

persistent attackers may collect encrypted traffic for later 

decryption attempts. With forward secrecy in place, such 

efforts become useless, which significantly strengthens 

the resilience of the system. 

Ease of integration is also worth emphasizing. 

Python provides accessible, well-documented libraries 

that allow developers to implement cryptographic 

mechanisms with only a few lines of code. This lowers 

the barrier for teams that may not have deep expertise in 

cryptography, enabling them to adopt strong security 

practices without the risk of introducing serious 

implementation errors. Additionally, because the 

proposed scheme is transport-agnostic, it is not tied to a 

specific communication channel. It can be applied 

equally well over HTTP, gRPC, MQTT, message queues, 

or even file-based communication. This flexibility means 

that the same cryptographic design can be reused across 

different layers of the system, simplifying security 

management. 

Despite these advantages, certain limitations must 

be acknowledged. The approach still requires an initial 

trusted channel for the exchange of long-term public 

keys. Without such a mechanism, the system remains 

vulnerable to impersonation during the first contact. 

Moreover, strict adherence to key rotation policies is 

essential. While the cryptographic primitives themselves 

are secure, failure to rotate keys properly or to maintain 

counters for replay protection could create exploitable 

weaknesses. Finally, in a real production environment, it 

remains advisable to use TLS as a baseline transport-

level protection. TLS provides compatibility with 

infrastructure components such as load balancers and 

reverse proxies, while the proposed lightweight scheme 

can serve as an additional end-to-end layer when 

application-level metadata protection is required. 

The comparison with existing approaches 

highlights the conditions under which this solution is 

most appropriate. If a system only requires basic 

confidentiality during data transfer, a standard TLS 

channel is often sufficient and easier to maintain. 

However, in cases where end-to-end integrity and control 

over metadata are critical, or where replay protection 

must be enforced independently of the transport, the 

described cryptographic overlay becomes a more suitable 

option. It allows developers to embed security guarantees 

directly at the application layer, extending protection 

beyond the limits of transport-level encryption. 

Beyond these observations, it is important to 

emphasize that the practical value of the proposed scheme 

lies not only in the efficiency of the chosen algorithms but 

also in their composability. The combination of AES-

GCM, X25519, and Ed25519 produces a layered defense 

model in which different cryptographic primitives 

reinforce each other. AES-GCM ensures the 

confidentiality and integrity of the actual data payload, 

while X25519 guarantees that each session starts with a 

fresh and unique secret, and Ed25519 provides a verifiable 

identity to prevent impersonation. This interdependence 

creates a resilient structure that is far stronger than any 

single primitive used in isolation. 

From an operational perspective, the scheme also 

facilitates a modular approach to system design. Since it 

operates entirely at the application layer, it can be 

embedded directly into message serialization frameworks, 

middleware, or RPC protocols without requiring changes 

at the network layer. This is particularly valuable in 

heterogeneous environments where multiple transports 

may coexist. Developers can secure HTTP APIs, gRPC 

calls, message queues, or even peer-to-peer file exchanges 

using the same cryptographic overlay, ensuring uniform 

protection across the entire system. 

Another key implication is the ease of verification 

and audit. Because the protocol defines explicit roles for 

each cryptographic primitive and enforces structured 

metadata within the AAD field, it becomes 

straightforward to log and monitor cryptographic events. 

Security teams can track handshake initiations, key 

rotations, and signature verifications as auditable events. 

This not only supports compliance with data protection 

regulations but also simplifies incident response by 

providing cryptographically verifiable evidence of 

communication flows. 

It is also worth noting that the scheme aligns with 
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emerging trends in security architecture, such as zero-trust 

networking and end-to-end encryption in distributed 

microservices. In a zero-trust model, no network path is 

assumed to be secure by default. Embedding cryptography 

at the application layer ensures that even if the transport 

layer is intercepted, or if an attacker gains partial access to 

the infrastructure, the confidentiality and integrity of the 

data remain intact. Similarly, in microservices, where 

messages often traverse multiple intermediaries, end-to-

end protection ensures that only the originating and 

receiving services have access to plaintext data, reducing 

the attack surface. 

Finally, while TLS will likely remain the backbone 

of secure transport for the foreseeable future, this work 

demonstrates that adding a lightweight cryptographic 

overlay at the application layer provides unique 

advantages. It strengthens replay resistance, enables 

metadata integrity, and decouples security from specific 

transport implementations. The combination of these 

factors makes the scheme not just a theoretical exercise 

but a pragmatic solution ready to be deployed in 

production-grade distributed applications [7]. 

7. Conclusions 

This paper has presented a practical and 

reproducible model for securing data exchange between 

Python applications using a hybrid cryptographic 

approach. The central contribution of the work is the 

demonstration that strong security guarantees can be 

achieved with minimal complexity by carefully 

combining symmetric and asymmetric techniques in a 

layered manner. By leveraging X25519 for ephemeral 

key exchange together with HKDF for secure session key 

derivation, the system establishes fresh and unpredictable 

session keys for each communication. Once the 

handshake is complete, AES-GCM provides efficient, 

authenticated encryption of the message stream, ensuring 

both confidentiality and integrity. Digital signatures with 

Ed25519 protect the handshake itself, establishing the 

authenticity of the participants and preventing 

impersonation or man-in-the-middle interference. 

Additional authenticated data (AAD), which binds 

protocol versions, session identifiers, and sequence 

numbers into every encrypted message, ensures that 

metadata is tamper-proof and that replay or downgrade 

attacks cannot succeed. 

The experimental evaluation confirmed that these 

security properties are achieved with only minimal 

performance cost. Encryption and decryption of medium-

sized messages consistently required less than a 

millisecond, while asymmetric operations such as 

X25519 key exchange and Ed25519 signing or 

verification added only a few milliseconds to the initial 

session setup. Such results make the scheme feasible not 

only for server-grade systems but also for latency-

sensitive applications such as real-time monitoring tools, 

microservice architectures, or IoT environments. 

Importantly, the measurements demonstrate that the 

computational burden of cryptography is no longer a 

limiting factor. Instead, the bottlenecks in distributed 

systems continue to lie in network latency and 

application logic, which means that the adoption of 

robust end-to-end security need not come at the expense 

of usability or responsiveness. 

Beyond raw performance, the work highlights the 

accessibility of advanced cryptography in modern 

programming environments. Python, with its mature 

libraries like cryptography and PyNaCl, allows 

developers to implement secure communication channels 

with only a handful of lines of code. This democratization 

of cryptographic tools is significant because it lowers the 

barrier for organizations to adopt best practices. Even 

teams without dedicated cryptography experts can embed 

protection directly into their applications, reducing the 

risk of costly vulnerabilities caused by ad hoc or 

improvised security mechanisms [1,2]. 

The broader implication is that security should not be 

viewed exclusively as a responsibility of the network 

transport layer. While TLS remains indispensable as a 

general-purpose mechanism for securing communication 

over the internet, this study shows that embedding 

cryptographic guarantees at the application layer provides 

important complementary benefits. By operating directly 

on application-level messages, the scheme ensures that 

security persists even when data passes through 

intermediate brokers, message queues, or file-based 

exchanges. This end-to-end protection model aligns with 

modern trends such as zero-trust networking and 

microservice-based architectures, where the assumption 

of a trusted network perimeter is no longer realistic. 

Looking toward the future, the presented model 

provides a foundation upon which further advancements 

can be built. One promising direction is the integration of 

post-quantum cryptographic algorithms, such as Kyber for 

key exchange and Dilithium for digital signatures, which 

would future-proof the scheme against the emerging 

threats of quantum computing. Another direction involves 

coupling the protocol with centralized key management 

systems (KMS). By doing so, key rotation and auditing 

could be automated, ensuring compliance with strict 

regulatory frameworks such as GDPR or HIPAA while 

reducing the administrative burden on developers. Finally, 

enriching the model with built-in monitoring, logging, and 

anomaly detection mechanisms would enhance 

operational visibility, making it easier to detect unusual 

patterns of communication that could indicate an 

attempted attack. 

In summary, this work demonstrates that secure 

communication between Python applications can be 

achieved with a lightweight yet powerful cryptographic 

scheme. It proves that the combination of modern 

primitives, minimal implementation complexity, and 

efficient performance characteristics makes it possible to 

integrate end-to-end protection into distributed systems 

without disrupting their operation. The proposed model 

not only addresses today’s challenges of confidentiality, 

authenticity, and integrity but also offers a path toward 

adaptation in the face of tomorrow’s evolving 

cybersecurity landscape.
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 ЗАХИСТ КАНАЛІВ ОБМІНУ ДАНИМИ МІЖ PYTHON-ЗАСТОСУНКАМИ ЗА ДОПОМОГОЮ 

КРИПТОГРАФІЧНИХ БІБЛІОТЕК 
П. А. Ковальов 

 

Анотація. Актуальність. Зростаюча залежність від розподілених застосунків актуалізує потребу у створенні 

захищених каналів обміну даними між програмними компонентами. Без належного захисту комунікація стає вразливою 

до атак, таких як перехоплення, підміна, модифікація та повторна відправка повідомлень. Предметом дослідження у 

статті є використання криптографічних бібліотек Python (cryptography, PyNaCl) для побудови легких, але надійних 

механізмів безпеки поверх наявних каналів обміну. Метою статті є представлення практичного та відтворюваного методу 

захисту інформаційних потоків шляхом поєднання симетричного шифрування (AES-GCM), ефемерного обміну ключами 

(X25519), виведення ключів (HKDF із SHA-256) та цифрових підписів (Ed25519). Були отримані наступні результати. 

Запропонована модель інтегрує аутентифіковане шифрування з додатковими даними (AEAD) та лічильниками 

повідомлень для запобігання повторним атакам, залишаючись сумісною з різними транспортними рівнями (HTTP, gRPC, 

MQTT). У роботі наведено мінімальні приклади коду та результати вимірювань продуктивності, які показують, що 

шифрування та розшифрування займають менше однієї мілісекунди для типових повідомлень, а обмін ключами та 

операції підпису додають лише кілька мілісекунд. Це свідчить про можливість реалізації потужного криптографічного 

захисту без значних накладних витрат. Висновок. Отримані результати підтверджують, придатність схеми для 

розподілених систем у режимі реального часу, мікросервісів та IoT. Подальший розвиток може включати інтеграцію 

постквантових алгоритмів та автоматизоване управління ключами. 

Ключові слова: Python-застосунки; захищена комунікація; AES-GCM; X25519; Ed25519; HKDF; захист від replay-

атак. 
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