
ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

5

UDC 004.056.55 doi: https://doi.org/10.20998/3083-6298.2025.02.01

Ostap Vasylenko1

1Aimprosoft, Lviv, Ukraine

COMPARATIVE ANALYSIS OF MODERN AUTHENTICATION AND
AUTHORIZATION PROTOCOLS FOR WEB APPLICATIONS

Abstract . Topicality. In the context of rapid digital transformation, secure access control to information resources has

become critically important. Authentication and authorization mechanisms form the basis of information security, ensuring

user identity verification and assigning appropriate access rights. The expansion of web applications, cloud services, and

distributed systems requires the implementation of flexible and attack-resistant protocols. The subject of study in this

article is a set of widely used authentication and authorization protocols, including Basic Authentication, OAuth 1.0, OAuth

2.0, Single Sign-On (SSO), and Multi-Factor Authentication (MFA). The purpose of the article is to compare these

technologies in terms of security, scalability, integration complexity, and suitability for various IT environments. The

research is based on the analysis of official standards (RFCs, NIST guidelines, OASIS specifications) and industry

practices. The results demonstrate that traditional approaches, such as Basic Auth and OAuth 1.0, are becoming obsolete

due to limited security, while OAuth 2.0 combined with SSO provides a balance between user convenience and security.

The introduction of MFA significantly enhances protection against account compromise but increases implementation

complexity. Conclusion. No single protocol is a universal solution; the highest security level is achieved through a

combination of modern authorization protocols, multi-factor authentication, token encryption, and Zero Trust principles.

These findings can be applied by developers, system architects, and cybersecurity specialists to design and implement

robust authentication and authorization systems capable of addressing current and emerging digital security challenges.

Key words: authentication; authorization; OAuth; Basic Auth; Single Sign-On; Multi-Factor Authentication; digital

security.

Introduction

Problem statement and relevance. In the context

of rapid digital transformation, secure access control to

information resources has become critically important.

Authentication and authorization are fundamental

security mechanisms that ensure the verification of a

user's identity and the definition of their access rights.

The growing number of web applications, cloud

services, and distributed information systems requires

the use of flexible and attack-resistant protocols.

Literature review. Research on authentication

and authorization mechanisms has evolved significantly

in recent years, reflecting the growing complexity of

information systems and the need for robust access

control. According to RFC 7617 [7], Basic

Authentication remains one of the earliest HTTP-based

authentication schemes, but it lacks encryption and is

recommended only in conjunction with TLS. OAuth

protocols, described in RFC 5849 [8] and RFC 6749 [9],

introduced delegated authorization, enabling third-party

applications to access resources without exposing user

credentials. OAuth 2.0 further simplified token handling

and is now a de facto standard for web and mobile

application security. Single Sign-On (SSO) solutions,

implemented via SAML 2.0 [10] or OpenID Connect

[11], provide centralized authentication and improve

user experience while reducing password fatigue,

though they introduce a single point of failure. Multi-

Factor Authentication (MFA), recommended by NIST

SP 800-63B [12] and CISA guidelines [22], strengthens

security by requiring multiple verification factors,

effectively mitigating risks such as phishing and

credential theft.

Recent studies [21–25] emphasize the importance

of integrating modern protocols with additional

safeguards, including API gateways, rate limiting, and

Zero Trust principles, to address emerging threats such

as token interception and replay attacks. However, the

choice of a specific authentication method remains

context-dependent, balancing security requirements,

user convenience, and implementation complexity.

The purpose of the research. The purpose of this

article is to conduct a comparative analysis of key

authentication and authorization protocols used in web

applications, taking into account their security

characteristics, ease of integration, and scalability

potential. The study also aims to formulate practical

recommendations for selecting the most appropriate

technologies for corporate and public IT environments.

1. Theoretical Background

1.1. Definition of Authentication and

Authorization. According to ISO/IEC 27000:2018 and

the terminology defined in RFC 4949: Internet Security

Glossary, authentication is the process by which a

system verifies whether the claimed identity of an

entity (user, device, or process) corresponds to the

evidence it provides. Such evidence may include secret

data (e.g., a password), cryptographic keys, hardware or

software tokens, as well as biometric characteristics.

The goal of this process is to ensure that access is

granted to the exact entity it claims to be.

Authorization, as defined in the same sources, is

the stage that follows successful authentication and

involves verifying an entity’s rights to specific

resources or actions. This is achieved by mapping the

entity to certain roles, groups, or other access attributes

and applying security rules defined in the organization’s

policies.

In simplified terms, authentication establishes the

identity of the user, while authorization defines the

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

6

boundaries of their capabilities within the system.

Although they are closely related, these processes are

implemented separately and can be combined in various

configurations depending on the requirements and

architecture of the information system.

1.2 Access Control Models. Access control

models define the logic and rules by which users,

processes, or other entities are granted or restricted in

their ability to interact with the resources of an

information system [1–6]. They establish mechanisms

for verifying permissions and regulate who may

perform specific operations on objects, such as reading,

modifying, deleting, or executing, and under what

conditions.

The choice of a particular access control model

affects the level of information security, the scalability

of rights management, administrative convenience, and

compliance with regulatory requirements [2,3].

The following subsections present the key

characteristics, advantages, disadvantages, and typical

use cases of commonly adopted models, including

Discretionary Access Control (DAC), Mandatory

Access Control (MAC), Role-Based Access Control

(RBAC), Attribute-Based Access Control (ABAC),

Identity-Based Access Control (IBAC), and Access

Control Lists (ACLs).

Discretionary Access Control (DAC) - is a model

in which the resource owner independently determines

who may perform specific operations on that resource.

Permissions are stored in the form of Access Control

Lists (ACLs). This approach is flexible but poses the

risk of unstructured rights management in large-scale

systems due to the absence of a centralized policy.

Advantages: flexibility of configuration; simplicity of

implementation in small-scale systems.

Disadvantages: lack of centralized management; risk of

uncontrolled privilege propagation.

Use cases: UNIX file systems, NTFS; small corporate

services with a limited number of users.

Mandatory Access Control (MAC) - is a model

based on a strict, centralized security policy that neither

users nor resource owners can modify. Access is

determined according to security labels (e.g.,

Confidential, Secret, Top Secret) assigned to both

resources and users. It is most commonly applied in

military, governmental, and mission-critical systems

where misconfiguration of permissions can have

catastrophic consequences.

Advantages: high level of security; compliance

with strict standards.

Disadvantages: low flexibility; complexity of

configuration and maintenance.

Use cases: governmental and military information

systems; SELinux; Trusted Solaris.

Role-Based Access Control (RBAC) - is a model

in which access rights are assigned not to individual

users but to specific roles (e.g., Administrator, Editor,

Viewer). Users automatically obtain the necessary

privileges when they are assigned to a corresponding

role. This approach simplifies administration in large-

scale systems, enables centralized access management,

and reduces the risk of errors in permission assignment,

particularly in corporate environments with a large

number of users and a complex access hierarchy.

Advantages: scalability; centralized management;

support for the principle of least privilege.

Disadvantages: complexity of managing a large

number of roles; requires a well-designed role structure.

Use cases: corporate ERP systems; AWS IAM;

human resource management systems.

Attribute-Based Access Control (ABAC) - is a

flexible model in which access decisions are made

based on a set of attributes: user properties (e.g., job

title, department), resource characteristics (e.g., data

type, confidentiality level), and environmental

conditions (e.g., time, location of access). Access

policies are defined as logical rules, enabling precise

control over access conditions and consideration of the

context in which the request is executed.

Advantages: high flexibility; adaptability to

various scenarios.

Disadvantages: implementation complexity;

requires a well-developed infrastructure and clearly

defined policies.

Use cases: Google BeyondCorp; Microsoft

Conditional Access; cloud services with dynamic

context-based verification.

Identity-Based Access Control (IBAC) - is a model

in which access rights are assigned directly to specific

users rather than to roles or attributes. Identification is

performed using a unique identifier (e.g., username,

certificate, ID card), after which the user is granted a set

of permissions linked specifically to their account. This

approach is simple to implement and convenient for

small systems with a limited number of users; however,

in large-scale environments, it complicates

administration because each permission change must be

applied to individual users separately.

Advantages: easy configuration in small systems;

rapid implementation.

Disadvantages: poor scalability; high

administrative overhead in large environments.

Use cases: small internal company systems with

few users and no defined roles.

Access Control Lists (ACLs) are an access control

mechanism in which each object stores a list of subjects

(users or groups) and their corresponding permissions

(read, write, execute, etc.). When an object is accessed,

the system checks this list to determine whether the

subject has the required rights. ACLs are convenient for

fine-grained configuration of access to individual

resources; however, in large systems, managing these

lists can become complex and may require automation.

This approach offers flexibility, but with a large number

of objects and users, ACL administration can be labor-

intensive.

Advantages: fine-grained access control for each

resource.

Disadvantages: maintenance complexity in large

systems; risk of errors during large-scale changes.

Use cases: POSIX ACL, NTFS ACL, network

ACLs in routers and firewalls.

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

7

1.3 The Role of Encryption and Tokens.

Encryption and tokens are fundamental components of

modern authentication and authorization mechanisms,

playing a key role in ensuring confidentiality, integrity,

and controlled access within information systems.

Encryption ensures that transmitted or stored

credentials, access tokens, and other sensitive data

remain inaccessible to unauthorized parties, even in

cases of intercepted network traffic or compromised

system nodes.

Tokens, in turn, provide a flexible and

standardized way to confirm access rights without

repeatedly transmitting primary credentials, thereby

reducing the risk of their disclosure and simplifying

integration between distributed services.

Combined, these two mechanisms form the

foundation of secure interaction between users, services,

and resources in corporate, cloud, and distributed

environments [5,9,13-15].

Encryption - according to NIST SP 800-175B [13]

and RFC 4949 [5], encryption is the process of

transforming information into a form unreadable by

unauthorized parties, using cryptographic algorithms

and keys.

In the context of authentication and authorization,

encryption performs several critical functions:

Credential protection during transmission —

ensured by transport-layer protocols such as TLS 1.3,

which guarantee that logins, passwords, and tokens

cannot be intercepted in plain text;

Secure password storage — achieved by applying

cryptographic hash functions with salting (bcrypt,

scrypt, Argon2), making it impossible to recover the

original password even in the event of a database

breach;

Encryption of access tokens and session data —

prevents unauthorized use or forgery of data that

confirms the authenticity of a session. The use of

modern cryptographic algorithms (AES-256,

ChaCha20-Poly1305, ECC) and adherence to NIST

recommendations significantly reduces the risk of man-

in-the-middle attacks and credential compromise;

Tokens - as defined in RFC 6750 [14] and RFC

7519 [15], a token is a digital marker containing

information about the subject’s identity and their access

rights. Tokens eliminate the need for repeated password

transmission and provide a standardized mechanism for

interaction between clients and servers.

Main types of tokens:

Bearer tokens — grant access to any subject that

presents them and therefore require special protection

against interception.

Proof-of-possession tokens — require

cryptographic proof that the subject possesses the

private key associated with the token.

Most common token formats:

JWT (JSON Web Token) [15] — a compact

format that can include a signature (JWS) or encryption

(JWE), allowing secure transmission of user

information and access rights.

Opaque tokens — non-transparent identifiers that

carry no meaningful payload and require validation on

the authorization server.

Interaction between Encryption and Tokens. In

modern authorization protocols such as OAuth 2.0 [9]

and OpenID Connect [11], tokens are transmitted

exclusively over secure channels (HTTPS/TLS), and

their contents are additionally signed or encrypted. This

ensures the integrity and authenticity of the transmitted

data and makes forgery impossible. Improper

implementation of encryption or insufficient protection

of tokens often leads to critical vulnerabilities, such as

session hijacking or replay attacks. Therefore, these

aspects must be a top priority when designing secure

systems.

2. Overview of Modern Approaches

Modern authentication and authorization systems

implement a range of technologies and architectural

solutions aimed at achieving a balance between security,

user convenience, and administrative efficiency. This

section provides an extended review of the main

methods most commonly used in web applications,

corporate environments, and cloud services, in

accordance with official standards and specifications

[7–12].

2.1. Basic Authentication. According to RFC

7617 [7], Basic Authentication is an HTTP

authentication method in which user credentials are

transmitted in Base64 format within the Authorization

header. The method is simple to implement but does not

provide encryption, and therefore should only be used in

combination with HTTPS [12,24].

Fig. 1. Example: The request header for a user: “admin” with

password: “1234”. Where:

 YWRtaW46MTIzNA== is the Base64-encoded string

"admin:1234"

Fig. 2. Example: HTTP request uses basic auth

Key features: Base64 is not an encryption method

— it only encodes data into a text format for

transmission and does not ensure confidentiality. This

approach does not hide content, and anyone obtaining

the Base64 string can easily decode it back; it also does

not protect against tampering or interception.

Additionally, with this method, the username and

password are sent with every HTTP request to the

server. On the positive side, it is compatible with most

HTTP clients and servers and requires no additional

libraries.

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

8

Fig. 3. Basic Authentication simplified flow

Recommendations for using this protocol include

mandatory HTTPS to prevent credential interception

[12,24]. Passwords should never be stored in plain text

on the server — hashing algorithms such as bcrypt or

Argon2 must be used instead. This method should be

combined with other security measures, such as API

Gateway, rate limiting, and IP address filtering.

Furthermore, instead of sending a username and

password directly, it is preferable to use an API token to

reduce the risk of account compromise.

Disadvantages:

- No protection against interception – Without

TLS (HTTPS), credentials are transmitted in clear text

and can be captured;

- No session mechanism – The server does not

maintain state; the client must send credentials with

each request;

- No password brute-force protection –

Credential guessing is possible without additional

safeguards.

Advantages:

- Ease of implementation – Supported by almost

all web servers, browsers, and HTTP clients without

extra configuration;

- Operational transparency – Does not require

complex libraries or additional protocols.

Use cases: Internal APIs in secure networks, test

environments, and quick prototypes. Rarely used in

public services without TLS.

2.2. OAuth 1.0 / OAuth 1.0a. According to RFC

5849 [8], OAuth 1.0 is a delegated authorization

protocol that enables one application to obtain limited

access to the resources of another without transmitting

the user's credentials. It uses cryptographic signatures to

verify requests. The core idea is that the user explicitly

grants the application permission to access their data,

after which the service issues temporary access keys

(Access Tokens) to the application. In this way, the

user's login and password are neither transmitted to nor

stored by the third-party application.

A typical authorization process involves the client

first sending a request to the service to obtain a

temporary token and secret (Request Token). The user

is then redirected to a URL provided by the service,

where they grant access. Afterwards, the client

exchanges the Request Token for an Access Token,

which is subsequently used to sign requests and gain

access to the required resources.

Fig. 4. OAuth 1.0 simplified flow

Key features: OAuth 1.0 does not transmit the

user’s password to third-party services, relying instead

on signed requests (HMAC-SHA1, RSA-SHA1, or

PLAINTEXT) to prevent data tampering. Although it

can technically operate without HTTPS, in modern

environments the use of HTTPS is still mandatory. The

protocol also protects against replay attacks by using

unique nonce values and timestamp parameters for each

request.

Disadvantages:

- Complex implementation (particularly

signature generation and parameter handling);

- Multiple steps in the authorization process

increase the risk of errors;

- Largely replaced by OAuth 2.0 due to

complexity and lack of flexibility;

- Poor compatibility with modern SPA and

mobile applications.

Advantages:

- Prevents password disclosure to third-party

services;

- Can work without HTTPS (due to

cryptographic signing);

- Protects against data interception in transit

(when signature implementation is correct).

Use Cases: Service-to-service integrations in the

2008–2013 period (e.g., legacy Twitter API, older

versions of LinkedIn API).

2.3. OAuth 2.0. OAuth 2.0 is a modern

authorization protocol that allows third-party

applications to obtain limited access to a user’s

resources without the need to transmit the user’s

password. It was standardized in RFC 6749 [9] in 2012

as a simplified and more flexible replacement for OAuth

1.0. The main difference from the previous version lies

in abandoning the complex mechanism of cryptographic

signatures in favor of mandatory use of the HTTPS

protocol and simplified token handling.

Key Features: The protocol defines four key roles:

Resource Owner — the owner of the resources,

typically the end user, who controls access to their data;

Resource Server — the server where the resources are

stored and which provides them in response to requests

with a valid access token; Client — the application that

seeks to access resources on behalf of the user; and

Authorization Server — the server responsible for

authenticating the user and issuing tokens [16]. Several

types of tokens are used in the authorization process.

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

9

The Access Token has a short lifespan and is used to

access resources, while the Refresh Token has a longer

lifespan and allows obtaining a new Access Token

without reauthorization. In the context of OpenID

Connect, an ID Token is additionally used, containing

information about the user [17], [18]. Tokens are

obtained through so-called grant types. The most secure

and recommended method is the Authorization Code

Flow (with PKCE support for mobile applications and

SPAs) [19]. Less secure methods include the Implicit

Flow for SPAs and Resource Owner Password

Credentials (ROPC), where the user directly enters their

login and password into the client. The Client

Credentials Flow is used for machine-to-machine

communication between services without user

involvement [16,20].

Fig. 5. OAuth 2.0 simplified flow

Disadvantages:

- Complete reliance on HTTPS for security;

- Vulnerability in case of token compromise;

- Lack of a built-in mechanism for request

signing;

- Need for careful storage and protection of

tokens.

Advantages:

- Delegation of access without transmitting the

password;

- Support for various scenarios (web, mobile,

IoT, API);

- Flexible integration with OpenID Connect for

Single Sign-On (SSO);

- Simpler implementation compared to OAuth

1.0.
Use Cases: OAuth 2.0 is widely applied across

various domains due to its flexibility and support for

multiple authorization scenarios. In public web

applications, it enables secure access to user data on

external services — for example, allowing a website to

retrieve a user’s Google Calendar events or Facebook

profile information without exposing credentials. In

mobile applications, it provides secure authentication

and resource access through integration with social

identity providers (e.g., Google Sign-In, Apple ID). In

enterprise environments, OAuth 2.0 is frequently used

in combination with OpenID Connect for implementing

Single Sign-On (SSO) across corporate applications,

thereby improving user experience and reducing

password fatigue. In API-based architectures, it

facilitates secure machine-to-machine communication

by issuing tokens via the Client Credentials Flow,

ensuring that backend services can authenticate and

authorize each other without human intervention. In IoT

ecosystems, OAuth 2.0 supports secure device-to-cloud

interactions, where constrained devices use delegated

tokens to interact with cloud services under predefined

scopes and lifetimes.

2.4. Single Sign-On (SSO). According to the

SAML 2.0 Technical Overview [10] and OpenID

Connect Core 1.0 [11], Single Sign-On (SSO) is an

authentication architecture that allows a user to

complete a single login procedure and gain access to

multiple independent systems without re-entering their

credentials. SSO is not a standalone protocol but is

implemented using existing standards and technologies

such as SAML 2.0, OpenID Connect, or Kerberos. In

this mechanism, a central authentication service

maintains the user’s session and issues tokens or

assertions to other systems that trust this service. SSO is

widely used in corporate, cloud, and inter-organizational

environments, ensuring a balance between usability and

centralized access management.

Key Features. The key principle of SSO is that a

user authenticates only once via a central service, after

which the system passes a token or assertion to other

services confirming the user’s identity. Administrators

can centrally enforce unified access policies, including

multi-factor authentication, IP-based restrictions, and

session management. The primary advantages of this

approach include a reduced number of passwords to

remember, improved productivity through faster access

to resources, and centralized security control. At the

same time, disadvantages include a single point of

failure—if the central IdP experiences an outage, access

to all services is blocked; the risk of account

compromise granting an attacker access to all integrated

systems; and the need for configuration alignment

between all participants in the system.

Fig. 5. SSO simplified schema

SAML 2.0. Security Assertion Markup Language

(SAML) 2.0 is an XML-based standard for exchanging

authentication and authorization data, developed by the

OASIS Security Services Technical Committee [10]. Its

primary purpose is to enable SSO in corporate and inter-

organizational environments. The process works as

follows: the user sends an access request to a service

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

10

provider (SP), which redirects them to an identity

provider (IdP) for authentication. Upon successful

verification, the IdP generates a SAML Assertion—an

XML document containing the user’s attributes and

authorization information. The SP validates the digital

signature on the assertion and, if successful, grants

access to the resource. The key roles in this process

include: the Principal (the user) — initiates the resource

access request; the Identity Provider (IdP) —

authenticates the user and issues the SAML assertion;

and the Service Provider (SP) — grants access to the

resource upon successful validation of the assertion.

OpenID Connect (OIDC). OpenID Connect is an

authentication protocol built on top of OAuth 2.0 that

uses JSON Web Tokens (JWT) to transmit user

information [11]. Unlike SAML, it is oriented toward

modern web and mobile applications. The process

works as follows: the user attempts to access a client

application, which redirects them to an authorization

server for authentication. After a successful login, the

server returns an ID Token and an Access Token, which

the application uses to access resources and retrieve user

data. The key components include: the ID Token — a

JWT containing information about the authenticated

user; the Access Token — a token used for accessing

resources; and the Authorization Server / Identity

Provider — the entity responsible for authentication and

token issuance.

Disadvantages of SSO:

- Single point of failure — an outage in the

central IdP blocks access to all services;

- Compromise of a user account may result in an

attacker gaining access to all integrated systems;

- Need for configuration consistency among all

participants in the system.

Advantages of SSO:

- Reduction in the number of passwords that

need to be remembered;

- Increased user productivity through faster

access to resources;

- Centralized security control.

Use cases (SSO): Enterprise application suites: one

login for ERP/CRM/HR/Email via a central IdP (e.g.,

Azure AD, Okta) using SAML/OIDC; SaaS federation:

corporate SSO to Google Workspace, Microsoft 365,

Salesforce, GitHub, etc., with corporate policies (MFA,

conditional access); B2C “social login”: customer

portals allowing “Sign in with Google/Apple/Facebook”

via OIDC; Education & campuses: students/staff access

LMS, library, and labs through a campus IdP

(eduGAIN/Shibboleth, SAML); Government e-services:

citizen SSO across tax, healthcare, and licensing portals

(often SAML with national eID); Healthcare: clinicians

access EHR, PACS, and e-prescription systems through

hospital IdP with enforced MFA; Partner/B2B

federation: suppliers and contractors access selected

apps via trust between organizations’ IdPs

(SAML/OIDC); Hybrid cloud & microservices:

centralized identity for on-prem and cloud apps; service

gateways validate tokens from the IdP.

2.5. MFA (Multi-Factor Authentication). Multi-

Factor Authentication - is an authentication method that

requires the use of at least two factors from different

categories: something you know (password, PIN),

something you have (token, smartphone), and

something you are (biometric data). It significantly

enhances account security by reducing the risk of

compromise if one of the factors is stolen.

Key features: The key features of MFA involve

using at least two of the three categories of factors [22]:

something you know — a password, PIN code, or an

answer to a security question; something you have — a

physical token, smartphone, smart card, or USB key

(e.g., YubiKey); and something you are — biometric

data such as fingerprints, facial recognition, or iris

scans. In some systems, this concept is extended with

additional factors, such as verifying the user’s location

(geolocation) or restricting authorization based on time.

Fig. 6. MFA simplified schema

Example: A typical MFA login process may look

like this: the user enters a username and password

(something they know), then the system sends a one-

time password (OTP) to their mobile phone (something

they have), and the final step is confirming the login

using a fingerprint (something they are).

Disadvantages:

- Increases the time and complexity of login for

the user [22];

- Requires additional hardware or software

applications;

- Potential access issues if one of the factors is

lost (e.g., a phone).

Advantages:

- Significantly reduces the risk of unauthorized

access in the event of a password leak [21];

- Enables adaptive verification (requiring an

additional factor only in suspicious cases);

- Flexible factor selection for different scenarios.

Use cases: MFA is widely used in scenarios where

a high level of security is required, such as: Online

banking and financial services — to protect against

unauthorized access to accounts and transactions;

365, Google Workspace, or AWS; Developer and

administrative accounts — securing privileged access to

production environments, servers, and code repositories

(e.g., GitHub, GitLab); Healthcare systems —

protecting patient data in compliance with regulations

like HIPAA.

3. Comparative Analysis

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

11

This section presents a comparative analysis of the

authentication and authorization technologies covered

in the previous chapters. The table below evaluates

each technology across several parameters: security

level, performance, ease of integration, infrastructure

requirements, user convenience, and typical use cases.

This comparison provides a concise overview to help

determine the most suitable approach for specific

application scenarios.

Table 1 – Comparison of the Main Authentication and Authorization Technologies

Technology Security Level Performance Ease of
Integration

Infrastructure
Requirements

User
Convenience

Typical Use
Cases

Basic Auth Low
(passwords are
transmitted in
plain text
without TLS)

High Very simple Minimal (only
an HTTP-
enabled server
is required)

Low
(login/passwor
d must be
entered each
time or stored)

Prototypes,
internal APIs,
testing
environments

OAuth 1.0 Medium
(signed
requests, but
complex
process)

Medium Complex Requires
implementation
of request-
signing logic
and key storage

Medium Legacy
integrations,
old APIs

OAuth 2.0 High (with
TLS, PKCE,
short-lived
tokens)

High Medium Requires an
authorization
server

High Web and
mobile
applications,
integration
with Google,
Microsoft

SSO* High (depends
on
implementation
— SAML,
OIDC,
Kerberos)

High Medium/High Requires IdP,
integration
configuration

Very high
(single sign-on
for multiple
services)

Corporate
portals,
government
and educational
systems

MFA Very high
(multi-factor
verification)

Medium Medium Requires
support for
additional
factors (TOTP,
SMS, hardware
keys)

Medium
(additional
login step)

Banks,
financial
systems,
administrative
accounts

*Note: SSO is implemented through protocols such as SAML 2.0, OpenID Connect, or Kerberos

Table 1 shows that each authentication and

authorization technology offers a different balance

between security, performance, ease of integration,

infrastructure requirements, and user convenience.

Basic Authentication, while the easiest to implement

and highly performant, provides the lowest security

level and is suitable only for internal or testing

environments. OAuth 1.0 offers moderate security but is

largely obsolete, remaining relevant only in legacy

integrations. OAuth 2.0 has become the standard for

modern web and mobile applications, delivering strong

security and high convenience at the cost of requiring an

authorization server and moderate integration effort.

Single Sign-On (SSO) significantly improves user

experience by enabling a single login for multiple

services, though its security depends heavily on correct

implementation and it requires a dedicated identity

provider. Multi-Factor Authentication (MFA) delivers

the highest security by adding verification layers but

slightly reduces convenience due to extra login steps.

Ultimately, no single approach is universally optimal—

the choice depends on achieving the right balance

between security, usability, and available infrastructure,

tailored to the specific environment and operational

needs.

3.1. Examples of Use in Corporate and Public

Environments. Across corporate and public sectors,

authentication and authorization technologies are

adopted with varying priorities. In corporate

ecosystems, security and centralized access control are

paramount, leading to the predominance of modern

protocols such as OAuth 2.0 and Single Sign-On (SSO),

often combined with Multi-Factor Authentication

(MFA) for administrative and high-privilege accounts.

Legacy methods like Basic Authentication and OAuth

1.0 have been largely phased out, persisting only in

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

12

niche scenarios such as isolated internal systems or

legacy integrations where modernization is impractical.

In the public sphere, usability and interoperability

with a wide range of devices and services play a

decisive role. OAuth 2.0 with OpenID Connect has

become the de facto standard for social logins and

integrations with cloud platforms, while MFA is

increasingly adopted by high-risk services such as

online banking, payment platforms, and large-scale e-

commerce or developer portals.

This divergence in adoption patterns highlights

how the same technologies can fulfill different roles

depending on the operational context, setting the stage

for a comparative analysis of their security,

performance, and implementation requirements.

3.2. Recommendations for Selecting a

Technology. The choice of an authentication and

authorization protocol depends on the type of

environment, security requirements, and the scalability

of the system.

Corporate Environments Recommended: SSO

combined with MFA, integrated with corporate

directories (e.g., Active Directory, LDAP). Rationale:

Simplifies account management, enables centralized

access control, and supports rapid scaling across a large

number of users and applications. Implementation

considerations: Requires a mature infrastructure,

configuration of an Identity Provider (IdP), and clearly

defined access policies.

Public Online Services Recommended: OAuth 2.0

with OpenID Connect, supplemented with MFA or

passwordless approaches. Rationale: Ensures security

when interacting with a large number of external clients

and third-party applications, while reducing the risk of

password storage on the service side. Implementation

considerations: Adherence to RFC recommendations,

proper token handling (protection against leaks, lifetime

configuration), and use of PKCE for SPA and mobile

applications.

Small-Scale and Internal Projects Recommended:

Simplified methods such as Basic Auth over HTTPS or

IBAC, in cases where risks are low and no scalability is

anticipated. Rationale: Minimal development costs and

rapid deployment. Implementation considerations:

Ensure encryption of the communication channel and

restrict access from external networks.

4. Challenges and Future Directions

Threats to Modern Authentication and

Authorization Systems. Despite the evolution of

security protocols and the enhancement of protection

mechanisms, modern authentication and authorization

systems remain vulnerable to a range of cyber threats

that attackers actively exploit to gain unauthorized

access.

Phishing — one of the most common threats,

based on social engineering techniques. The user enters

their credentials on a spoofed website or in a fake

application, believing they are interacting with a

legitimate resource. Even when data transmission is

encrypted (HTTPS), phishing attacks remain effective if

the user fails to detect the forgery.

Session hijacking — interception of an active user

session by stealing the session identifier (session ID).

This can occur through man-in-the-middle attacks,

cross-site scripting (XSS), or unsecured communication

channels. Once the session token is obtained, the

attacker can act on behalf of the user without requiring

re-authentication.

Token leakage — exposure of access or refresh

tokens used in protocols such as OAuth 2.0 or OpenID

Connect. This often results from improper storage of

tokens on the client side (e.g., in the browser’s

localStorage) or their transmission in plain text within a

URL.

Brute force and credential stuffing — automated

attacks that attempt to guess passwords or use stolen

username–password pairs from other services. The

vulnerability is exacerbated when users reuse the same

password across multiple systems.

Replay attacks — reusing an intercepted

authentication request to gain access again. These

attacks are particularly dangerous when systems do not

validate the uniqueness and lifetime of the request.

These threats illustrate that the security of

authentication and authorization systems depends not

only on the chosen protocol or method but also on its

proper implementation, regular updates to security

policies, and a comprehensive approach to data

protection.

4.1. Prospects for the Development of

Authentication Technologies. The further evolution of

authentication and authorization mechanisms is driven

by the need to enhance security without compromising

user convenience. Among the key trends are the

adoption of the Zero Trust Architecture concept and the

growing use of biometric and passwordless approaches.

Zero Trust Architecture (ZTA) is an approach that

completely rejects the traditional “trust the internal

network” model that has long dominated corporate

security. The core principle of ZTA is to continuously

verify the authenticity and privileges of every request,

regardless of whether the traffic originates from inside

or outside the network.

Key elements of ZTA include:

- Least privilege — each user or service is

granted only the rights necessary to perform specific

tasks.

- Network segmentation — dividing the

infrastructure into isolated zones with separate access

rules.

- Integration with MFA — requiring an

additional authentication factor for critical operations.

- Continuous monitoring and behavioral

analytics — detecting anomalies in user or service

activities.

By applying these principles, ZTA reduces the

impact of a single node or account compromise and

increases the resilience of corporate networks to attacks.

Biometric Methods and Passwordless Approaches.

One of the most promising directions is the transition to

ISSN PRINT 3083-6298 Територія безпеки. 2025. Т. 1, № 2

13

passwordless authentication, aimed at eliminating the

vulnerabilities associated with weak, reused, or stolen

passwords.

Core technologies include:

- FIDO2 and WebAuthn — open standards

enabling the use of hardware keys, mobile devices, or

biometrics instead of passwords.

- Biometrics — fingerprint, facial, or iris

recognition, often combined with local data encryption

in modern devices (e.g., Secure Enclave, Trusted

Platform Module).

- Hybrid methods — combining biometrics with

tokens or hardware keys to improve resilience against

the compromise of a single factor.

Such solutions are already being adopted by large

corporations, financial institutions, and government

online services, which aim to reduce the risks of

phishing and password-based attacks while ensuring fast

and convenient access for users.

5. Discussion of results

Modern authentication and authorization systems

face increasingly sophisticated threats, with phishing,

session hijacking, token leakage, and automated

credential attacks remaining among the most prominent.

Effectively countering these challenges requires not

only the improvement of existing protocols but also a

strategic shift toward new approaches such as Zero

Trust Architecture, which mandates continuous

verification of every request, and the adoption of

biometric and passwordless technologies capable of

significantly reducing password-related risks. The

combination of these strategies represents a promising

direction for the evolution of digital security, one that

addresses the challenges of the coming years while

maintaining a balance between reliability and user

convenience.

6. Conclusions

The analysis of modern authentication and

authorization approaches has shown that the choice of a

specific technology depends on a combination of

factors, including the required level of security,

performance requirements, integration complexity, and

the specifics of the applications. Traditional methods,

such as Basic Authentication and OAuth 1.0, are losing

relevance due to their limited functionality and

insufficient security. In contrast, OAuth 2.0 combined

with Single Sign-On (SSO) provides an optimal balance

between user convenience and security; however, its

effective implementation requires:

- Proper handling of tokens (storage, renewal,

invalidation);

- Correct processing of authorization errors;

- Secure redirect configuration;

- Adaptation of client-side logic to the specifics

of the protocol (particularly in mobile and single-page

applications).

The use of Multi-Factor Authentication (MFA)

significantly enhances resilience against account

compromise but requires additional changes to user

interfaces and login processes to maintain convenience

and compatibility across different devices.

The comparative analysis confirmed that there is no

universal solution for all scenarios. The highest level of

protection is achieved through a combination of several

approaches: modern authorization protocols, multi-

factor authentication, token encryption, and Zero Trust

architecture principles. At the same time, the

implementation of comprehensive solutions becomes

more complex as the number of integrated components

grows, requiring consistency between the frontend and

backend, support for various client platforms, and

proper interaction with external authorization services.

Future development prospects are associated with the

widespread adoption of passwordless authentication and

biometric technologies, which can minimize the risks of

password theft or brute-force attacks. Furthermore, the

large-scale implementation of Zero Trust Architecture

will ensure more flexible and reliable access control in

dynamic corporate environments but will require

significant investment in infrastructure modernization.

Therefore, while no universal solution exists, the

comparative analysis indicates that OAuth 2.0 combined

with SSO is generally the most effective choice for

large-scale and public-facing systems, MFA remains a

critical layer for securing sensitive accounts, and Zero

Trust principles provide the foundation for future-proof

access control. The choice should always be adapted to

the specific threat model, scale, and operational

requirements of the environment.

REFERENCES

1. NIST Special Publication 800-162 — Guide to Attribute Based Access Control (ABAC) Definition and Considerations (2014),

National Institute of Standards and Technology, [online]. nist:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf

2. ISO/IEC 10181-3:1996 — Information technology — Open Systems Interconnection — Security frameworks for open

systems: Access control framework (1996), International Organization for Standardization, [online]. iso:

https://www.iso.org/standard/18396.html

3. NIST Special Publication 800-53 Rev. 5 — Security and Privacy Controls for Information Systems and Organizations (2020),

National Institute of Standards and Technology, [online]. csrc: https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

4. DNIST RBAC Standard — Role-Based Access Control (2004), Information Technology Laboratory, National Institute of

Standards and Technology, [online]. nist: https://csrc.nist.gov/projects/role-based-access-control

5. RFC 4949 — Internet Security Glossary, Version 2 (2007), Internet Engineering Task Force (IETF), [online]. ietf:

https://datatracker.ietf.org/doc/html/rfc4949

6. RFC 8176 — Authentication and Authorization for Constrained Environments (2017), Internet Engineering Task Force

(IETF), [online]. ietf: https://datatracker.ietf.org/doc/html/rfc8176

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://www.iso.org/standard/18396.html
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/projects/role-based-access-control
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc8176

Terra Security. 2025. Vol. 1, No. 2 ISSN ONLINE 3083-6328

14

7. Resnick, P. (2015), “The ‘Basic’ HTTP Authentication Scheme”, RFC 7617, Internet Engineering Task Force (IETF),

[online]. ietf: https://datatracker.ietf.org/doc/html/rfc7617

8. Hammer-Lahav, E. (2010), “The OAuth 1.0 Protocol”, RFC 5849, Internet Engineering Task Force (IETF), [online]. ietf:

https://datatracker.ietf.org/doc/html/rfc5849

9. Hardt D. (2012), “The OAuth 2.0 Authorization Framework”, RFC 6749, Internet Engineering Task Force (IETF), [online].

Ietf: https://datatracker.ietf.org/doc/html/rfc6749

10. OASIS (2008), “Security Assertion Markup Language (SAML) V2.0 Technical Overview”, OASIS Standard, [online]. oasis:

https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

11. OpenID Foundation (2014), “OpenID Connect Core 1.0”, [online]. openid: https://openid.net/specs/openid-connect-core-

1_0.html

12. National Institute of Standards and Technology (NIST) (2017), “Digital Identity Guidelines: Authentication and Lifecycle

Management”, NIST Special Publication 800-63B, [online]. nist: https://pages.nist.gov/800-63-3/sp800-63b.html

13. National Institute of Standards and Technology (NIST) (2020), “Recommendation for Pair-Wise Key Establishment Using

Integer Factorization Cryptography”, NIST Special Publication 800-175B, [online]. nist:

https://csrc.nist.gov/publications/detail/sp/800-175b/final

14. Jones, M., Hardt, D. and Recordon, D. (2012), “The OAuth 2.0 Authorization Framework: Bearer Token Usage,” RFC 6750,

Internet Engineering Task Force (IETF), [online]. ietf: https://datatracker.ietf.org/doc/html/rfc6750

15. Jones, M., Bradley, J. and Sakimura, N. (2015), “JSON Web Token (JWT)”, RFC 7519, Internet Engineering Task Force

(IETF), [online]. ietf: https://datatracker.ietf.org/doc/html/rfc7519

16. Hardt, D. (2012), “The OAuth 2.0 Authorization Framework”, RFC 6749, Internet Engineering Task Force (IETF), [online].

ietf: https://datatracker.ietf.org/doc/html/rfc6749

17. Sakimura, N., Bradley, J., Jones, M., Medeiros, B. and Mortimore, C. (2014), “OpenID Connect Core 1.0”, The OpenID

Foundation, [online]. openid: https://openid.net/specs/openid-connect-core-1_0.html

18. Parecki, A. (2021), “OAuth 2.0 Simplified”, 2nd ed., Okta, [online]. https://oauth2simplified.com/

19. Campbell, B., Bradley, J., Sakimura, N. (2015), “Proof Key for Code Exchange by OAuth Public Clients”, RFC 7636, IETF,

[online]. ietf: https://datatracker.ietf.org/doc/html/rfc7636

20. OAuth.net, “Introduction to OAuth 2.0”, [online]. oauth: https://oauth.net/2/

21. National Institute of Standards and Technology (NIST) (2022), “Digital Identity Guidelines: Authentication and Lifecycle

Management”, NIST Special Publication 800-63B, [online]. nist: https://pages.nist.gov/800-63-3/sp800-63b.html

22. CISA (2023), “Multi-Factor Authentication (MFA)”, Cybersecurity and Infrastructure Security Agency, [online]. cisa:

https://www.cisa.gov/mfa

23. Microsoft (2023), “What is: Multifactor authentication”, Microsoft Security Documentation, [online]. microsoft:

https://learn.microsoft.com/azure/active-directory/authentication/concept-mfa-howitworks

24. OWASP (2023), “Authentication Cheat Sheet”, Open Worldwide Application Security Project, [online]. owasp:

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

25. Google Cloud (2023), “Multi-Factor Authentication overview”, Google Cloud Documentation, [online]. google:

https://cloud.google.com/architecture/identity/multi-factor-authentication-overview

Received (Надійшла) 12.08.2025

Accepted for publication (Прийнята до друку) 27.08.2025

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS

Василенко Остап Володимирович – спеціаліст за спеціальністю «Електронні прилади та системи», співробітник та

розробник програмного забезпечення компанії Aimprosoft, Lviv, Ukraine;

Ostap Vasylenko — specialist in “Electronic Devices and Systems,” employee and software engineer at Aimprosoft, Львів,

Україна;

e-mail: ostapvasylenko17@gmail.com; ORCID Author ID: https://orcid.org/0009-0006-1664-4937.

ПОРІВНЯЛЬНИЙ АНАЛІЗ СУЧАСНИХ ПРОТОКОЛІВ АВТЕНТИФІКАЦІЇ ТА АВТОРИЗАЦІЇ ДЛЯ

ВЕБЗАСТОСУНКІВ

О.В. Василенко
Анотація . Актуальність. В умовах швидкої цифрової трансформації безпечний контроль доступу до

інформаційних ресурсів став критично важливим. Механізми автентифікації та авторизації формують основу
інформаційної безпеки, забезпечуючи перевірку ідентичності користувачів та призначення відповідних прав доступу.
Розширення веб-додатків, хмарних сервісів та розподілених систем вимагає впровадження гнучких та стійких до атак
протоколів. Предметом дослідження в даній статті є набір широко використовуваних протоколів автентифікації та
авторизації, включаючи Basic Authentication, OAuth 1.0, OAuth 2.0, Single Sign-On (SSO) та Multi-Factor Authentication
(MFA). Метою статті є порівняння цих технологій з точки зору безпеки, масштабованості, складності інтеграції та
придатності для різних ІТ-середовищ. Дослідження базується на аналізі офіційних стандартів (RFC, рекомендації NIST,
специфікації OASIS) та галузевих практик. Результати демонструють, що традиційні підходи, такі як Basic Auth та
OAuth 1.0, застарівають через обмежену безпеку, тоді як OAuth 2.0 у поєднанні з SSO забезпечує баланс між зручністю
та безпекою користувача. Впровадження багатофакторної автентифікації (MFA) значно покращує захист від
компрометації облікового запису, але збільшує складність впровадження. Висновок. Жоден протокол не є
універсальним рішенням; найвищий рівень безпеки досягається завдяки поєднанню сучасних протоколів авторизації,
багатофакторної автентифікації, шифрування токенів та принципів нульової довіри. Ці висновки можуть бути
застосовані розробниками, системними архітекторами та фахівцями з кібербезпеки для проектування та впровадження
надійних систем автентифікації та авторизації, здатних вирішувати поточні та нові виклики цифровій безпеці.

Ключові слова: автентифікація; авторизація; OAuth; Basic Auth; Single Sign-On; Multi-Factor Authentication;
цифрова безпека.

https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://csrc.nist.gov/publications/detail/sp/800-175b/final
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc7636
https://oauth.net/2/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.cisa.gov/mfa
https://learn.microsoft.com/azure/active-directory/authentication/concept-mfa-howitworks
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cloud.google.com/architecture/identity/multi-factor-authentication-overview
mailto:ostapvasylenko17@gmail.com
https://orcid.org/0009-0006-1664-4937
https://orcid.org/0009-0006-1664-4937

